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Abstract

Bandit algorithms are guaranteed to solve diverse sequential decision-making
problems, provided that a sufficient exploration budget is available. However,
learning from scratch is often too costly for personalization tasks where a single
individual faces only a small number of decision points. Latent bandits offer
substantially reduced exploration times for such problems, given that the joint
distribution of a latent state and the rewards of actions is known and accurate. In
practice, finding such a model is non-trivial, and there may not exist a small number
of latent states that explain the responses of all individuals. For example, patients
with similar latent conditions may have the same preference in treatments but rate
their symptoms on different scales. With this in mind, we propose relaxing the
assumptions of latent bandits to require only a model of the preference ordering of
actions in each latent state. This allows problem instances with the same latent state
to vary in their reward distributions, as long as their preference orderings are equal.
We give a posterior-sampling algorithm for this problem and demonstrate that its
empirical performance is competitive with latent bandits that have full knowledge
of the reward distribution when this is well-specified, and outperforms them when
reward scales differ between instances with the same latent state.

1 Introduction

Personalized decision-making has promised to revolutionize healthcare for decades but its full impact
has yet to come. In the abstract, the problem is equivalent to recommendations for media consumption
or ad placement, in which algorithms make decisions and observe outcomes (reward) tailored for an
individual (problem instance). Bandit and reinforcement learning algorithms are well-suited for such
problems and have seen academic and commercial success (Li et al., 2010; Chapelle and Li, 2011;
Bouneffouf et al., 2020; Yancey and Settles, 2020; O’Brien et al., 2022). However, the scale of data
varies substantially with applications: a consumer may be exposed to dozens of recommendations
in a single session, and hundreds over their subscription to a service, but a patient may try only a
handful of treatments. Given their sample-hungry nature, learning a personalized treatment regime
using a classical bandit algorithm to explore solutions for a single individual is usually infeasible.

A promising solution to personalization with short exploration times is to leverage structural similar-
ities between problem instances (e.g., patients). Contextual bandits is a well-studied solution that
models the expected reward of actions as fixed functions of an observed context variable (Lattimore
and Szepesvári, 2020). However, this assumes that two instances would yield the same reward on
average for the same action, were they in the same situation. In practice, observed contexts are
rarely rich enough to capture all individual preferences. For example, in problems where rewards
represent the subjective rating of an experience, different people tend to have different internal rating
scales, unobserved by the learning algorithm. Latent bandits (Maillard and Mannor, 2014) attempt
to overcome this limitation by allowing the reward function to depend on a latent state, observed
partially and noisily through the context and the outcome of actions. If the latent state is small relative
to the number of actions, or the reward is a simpler function of the latent state than the context, this
structure may be sufficient to substantially reduce exploration times (Hong et al., 2020a; Kinyanjui
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et al., 2023). However, existing works on latent bandits assume that the full posterior distribution of
the latent state is known at inference time but give little or no guidance for how it can be learned.

Contributions. 1) We propose Latent Preference Bandits (LPB)—a variant of latent bandits where
each discrete latent state defines a preference ordering over actions, but not a full distribution of
rewards. 2) We show that knowing only the set of possible preference orderings can still substantially
lower the difficulty of the problem, as determined by the number of constraints added to an instance-
specific lower bound on the asymptotic regret. 3) Moreover, because states only determine preference
orderings, we show that LPB accommodates generalization between problem instances (e.g., patients)
with different absolute reward scales, but with shared relative preferences. 4) We also show that
knowledge of the set of possible preferences gives a bound on the posterior probability of the latent
state and leverage this result in a regret minimization algorithm lpbTS, based on sampling from
the approximate posterior. 5) We show empirically that it is comparable to latent bandits with fully
known reward distributions when instance rewards lie in the same scale, and outperform them when
instances differ in absolute reward scales. 6) Our experiments confirm that the benefit of utilizing
preference structure over non-latent baselines increases as the number of arms (preference constraints)
grows much larger than the number of states.

2 Related work

The latent bandit model was first studied by Maillard and Mannor (2014) in the regret minimization
setting and has later been revisited for regret minimization by Atan et al. (2018); Hong et al. (2020a);
Pal et al. (2023); Balcıoğlu et al. (2024) and for best-arm identification by Kinyanjui et al. (2023).
Recent works have also extended the latent bandit to a non-stationary version where the latent variable
evolve over time (Hong et al., 2020b; Nelson et al., 2022; Russo et al., 2024). A common theme in
these works is that the reward distributions are determined completely by the latent state. This differs
from our setting in the sense that we assume the latent state only defines an ordering of the arms.

Bandit problems with preference feedback have been widely studied in dueling bandits (Yue and
Joachims, 2009; Sui et al., 2018; Bengs et al., 2021; Bergström et al., 2024) which are a bandit
class where action pairs are selected at each round, and the rewards are independent, stochastic
preference feedback of which arm is preferred (Sui et al., 2018). The goal is to identify the best
arm, or minimize regret via pairwise comparisons (Ailon et al., 2014; Bengs et al., 2021). In dueling
bandits, preferences are typically directly observed (Bengs et al., 2021), and often modeled with
either utility functions (Yue and Joachims, 2009) or Probabilistic models like Bradley-Terry Models
(BTMs) (Bradley and Terry, 1952; Vigneau et al., 1999). Our setting differs from dueling bandits
in that we observe feedback as absolute numerical rewards for a single action, and preferences are
inferred from these, in contrast to being observed directly through relative preference feedback.

Contextual bandits (Chu et al., 2011; Agrawal and Goyal, 2013; Zhou, 2015; Lattimore and Szepesvári,
2020) exploit structure between context, actions, and rewards, promising high personalisation.
However, they often assume a fixed expected reward across instances of the same context-action pair,
which is inapplicable whenever no such context variable exists, even when the action preference is
maintained. In our current work, we do not consider rewards structured based on context variables,
but focus on the utility of latent preferences instead.

3 Multi-armed and latent bandits

We study sequential decision-making problems where the goal is to select actions a ∈ A = {1, ..., k}
to maximize the corresponding reward Ra, regret minimization problems. The goal is defined
with respect to the unknown expectations of rewards µa := E[Ra], with the optimal action a∗ =
argmaxa µa and optimal reward µ∗ = µa∗ . We aim to select actions at according to a policy π on
times steps t = 1, ..., T until a horizon T to accumulate as little regret Reg(T ) as possible,

minimize
π

Reg(T ) with Reg(T ) :=

T∑
t=1

Eπ[µ
∗ −RAt

] . (1)

A central challenge in multi-armed bandits (MAB) is that solving (1) requires excessively many trials,
especially when the number of arms, k is large. To remedy this, latent bandits (Maillard and Mannor,
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Figure 1: Illustration of the latent preference bandit and related problems for reward means on the
2-simplex µ ∈ ∆k−1. In the MAB problem, no structure is known. In latent bandits, the full vector
of reward means µz is known for each latent state z. In latent preference bandits, only the set of
possible orderings is known (shown as colored segments) but two problem instances with the same
latent state z may differ in their means as long as the orderings of their reward means are equal.

2014), categorize instances based on a discrete latent variable Z ∈ {1, ...,m}, representing, for
example, the disease subtypes of patients with a given condition. In this way, one instance can inform
another one with the same latent state. If the conditional distribution of rewards p(Ra | Z = z)
and marginal distribution p(Z = z) for each latent state z are known or can be learned, these are
sufficient to infer Z for a new instance and to minimize cumulative regret (Hong et al., 2020a).

Hong et al. (2020a) proposed the latent bandit algorithm mTS for regret minimization based on
Thompson sampling (Thompson, 1933b; Agrawal and Goyal, 2012). At each round t, the algorithm
samples a state zt from the posterior distribution (ignoring context variables here)

p(Z = z | a1, ..., at−1, r1, ..., rt−1) ∝
t−1∏
s=1

p(Ras
= rs | z)p(Z = z)

and selects the highest-reward action of that state, a∗z = argmaxa µa,z where µa,z := E[Ra | Z = z].

Estimating a full latent-variable modelM = (p(Z), {p(Ra | Z)}ka=1) is nontrivial. It may not be
identifiable from observable information and may require a very large data set even if it is. Moreover,
requiring that all instances with state Z = z follow the same reward distribution p(Ra | Z = z)
prevents instances from having individual reward scales, as in the example of subjective ratings from
the Introduction. Fortunately, as we will see, knowing the complete likelihood is not necessary to
achieve benefits over learning tabula rasa for a new bandit instance. In fact, knowing only the optimal
arm in each latent state leads to improved regret bounds when m < k. However, imposing additional
structure on the rewards of different actions can help distinguish the true latent state from alternatives.
To this end, we study latent bandits with states defined by preference orderings of actions.

4 Latent preference bandits

We introduce the latent preference bandit (LPB) problem and give an instance-dependent lower
bound for the best achievable regret which depends on the structured preferences in rewards. Next,
we propose a posterior-sampling algorithm to solve the problem and discuss its performance.

In latent preference bandits, a problem instance (z,P) is defined by the latent state z and reward
distributions for the k actions, P = (P1, ..., Pk) structured according to z. For clarity, we focus
on Gaussian rewards with equal variance σ2 where Pa = N (µa, σ

2) and, for the remainder of
the paper, we represent instances (z,µ) by their latent states and reward means µ = [µ1, ..., µk]

⊤.
Each latent state z ∈ [m] is associated with a preference ordering of actions Oz = (oz,1, ..., oz,k)
such that the expected rewards for problem instances (z,µ) are ordered according to Oz , i.e.,
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µoz,1 ≥ µoz,2 ≥ · · · ≥ µok .1 For convenience, let ia,z denote the rank of action a under Oz , that is
ia,z = j such that oz,j = a, and let a ⪰z a′ ⇔ ia,z < ia′,z denote that a is preferred to a′ under z.

Two problem instances (z,µ), (z′,µ′) with the same latent state z = z′ are guaranteed to have
the same preference orderings but may not have the same distributions of rewards. This allows for
modeling individual rating scales, as in the following example: Two patients with a chronic condition
share the same subtype of disease z which determines what therapies a ∈ A are preferred over which
other therapies. However, the two patients have different tolerance for pain and give different ratings
Ra for their symptoms under treatment a even if their relative preferences are the same. We let
Hz = {µ ∈ Rk : ∀a ⪰z a′ : µa ≥ µa′} denote the set of all reward parameters consistent with z.

At the start of learning, algorithms are assumed to have access to a model of {(z,Oz)}z∈Z of
preference orderings but have no knowledge of rewards—they only know which preference orderings
are possible. We assume that all latent states have unique orderings. We illustrate the LPB problem
in Figure 1 for the special case of reward means in the 2-dimensional simplex, and compare it to
the standard multi-armed bandit (MAB) and the latent bandit problem from Hong et al. (2020a).
The LPB problem has more structure than MAB but less than full-model latent bandits. To see this,
we can adapt an instance-specific lower bound on the asymptotic regret from Maillard and Mannor
(2014), in turn adapted from Agrawal et al. (1989).
Theorem 1 (Agrawal et al. (1989)). Let (z,µ) be the true latent state and reward means of an
instance and letA− = A\{a∗z} be the set of sub-optimal arms a with optimality gaps ∆a = µ∗−µa.
Then, for any uniformly good control scheme, i.e., that achieves Reg(T ) = o(T b) for any b > 0,

lim inf
T→∞

Reg(T )

log T
≥ min

wc∈P(A−)
max

λ∈Alt(z,µ)

∑
a∈A−

wa∆a∑
a∈A−

waKL(µa||λa)
, (2)

where Alt(z,µ) = ∪z:a∗
z′ ̸=a∗

z
Hz , P(A−) is the simplex over A−, and KL(µa||λa) is the KL-

divergence between Gaussian distributions with unit variance and means µa, λa.

The set Alt(z,µ) of alternative instances contain only parameters µ′ consistent with orderings that
are different from that of the true state, Oz . If every possible ordering is represented by a latent state
(m = k!), the problem is difficult, comparable to an MAB without structure. On the other hand, if
m≪ k! and the orderings of latent states are random, the closest confusing instance λ∗, maximizing
(2), is likely to have an ordering with a large number of inversions to µ, the KL term will be large,
and the bound small—the problem is easier to solve. We return to this discussion in Section 4.2.1.

4.1 Regret minimization with absolute feedback

We focus on learning from absolute feedback2 where decision-makers select a single action at ∈ [k]
at each round t and observe a stochastic reward Rt ∈ R, generated according to the unknown instance
(z,µ) with µ ∈ Hz . Disregarding the latent state, the setting coincides with the classical MAB
problem. Thus, the primary target for algorithms that exploit knowledge of the set of possible latent
states z ∈ [m] and their preference orderings Oz is to minimize regret or identify the optimal arm
more rapidly than MAB algorithms and other algorithms that exploit the latent structure.

The worst-case asymptotic regret for the MAB problem is well-known to be Θ(
√
kT ) as T →∞,

achieved by several algorithms, including upper-confidence bound (UCB) maximization and posterior
(Thompson) sampling (Lattimore and Szepesvári, 2020). Hong et al. (2020a) proposed the mTS
and mUCB algorithms for the latent bandit problem with m states and showed that their worst-
case asymptotic regret with full knowledge of the posterior of observations, including the reward
distribution, is O(

√
mT log T ). This matches the MAB result up to log factors, but with m instead

of k, which can be very beneficial if m < k. However, with knowledge of the set of possible latent
states, this can be achieved simply by restricting the action set.
Proposition 1. Consider the following algorithm. Whenever k < m, restrict the action to the subset
A∗

Z of optimal u < m arms of which each is optimal in at least one latent state, A∗
Z = {a ∈ [k] :

∃z ∈ Z : a∗z = a}, and run a standard MAB algorithm restricted to A∗
Z . When k ≥ m, run a

standard MAB algorithm on A = [k]. This procedure achieves O(
√
min(k,m)T ) regret in the worst

case on the latent bandit and latent preference bandit problems.
1We drop the z-subscript in µoz,i for readability when clear from context.
2In the Appendix, we briefly discuss latent preference bandits with relative (dueling) feedback.
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Algorithm 1 Thompson sampling for LPB regret minimization with absolute rewards (lpbTS)

1: Let p̂(z) = 1
m for latent states z = 1, ...,m

2: for t = 1, ... do
3: Sample zt ∼ p̂(z)
4: Perform action at = a∗zt
5: Observe rt from the environment
6: for z = 1, ...,m do
7: Update mean parameters µ̂z according to (3)
8: end for
9: Update latent state posterior p̂(Z) according to (4)

10: end for

Proof. The procedure uses min(|A|, |A∗
Z |) ≤ min(k,m) arms, and the optimal arm for any latent

bandit or LPB instance is contained in either action set. We can directly apply standard regret bounds
for MAB algorithms (see e.g., Lattimore and Szepesvári (2020)) to the restricted action sets.

Notably, the procedure in Proposition 1 does not use knowledge of the set of possible reward means,
only the set of possible best arms. On its face, it may seem that the mTS algorithm of Hong et al.
(2020a) is matched by simply this simple algorithm. However, as we see empirically in Section 5,
this is far from true: mTS achieves substantially better performance by exploiting reward structure,
even though this is not yet explained by theory. In fact, when all reward means are distinct across
states and known, µa,z ̸= µa,z′ , regret constant in T is achievable for latent bandits. However, this is
not achievable in the LPB setting since the mean parameters must be estimated during exploration. In
short, to reach optimal empirical performance on the latent preference bandit problem, and hope to
match the lower bound in (2), it is critical to exploit the structure between arm parameters.

4.2 A posterior-sampling LPB algorithm exploiting the ordering of means

We propose the lpbTS algorithm (Algorithm 1) for the LPB problem based on sampling from
the posterior of the latent state and selecting the optimal arm for that state. First, let DT =
((a1, r1), ..., (aT , rT )) denote the history of the first T observations collected during exploration for
a problem instance (z,µ). The likelihood of DT under a state z with preference ordering Oz is then

L(DT | Z = z) =

T∏
t=1

p(rt | at, z) =
∫
µ∈Hz

p(µ | z)
T∏

t=1

p(rt | at,µ, z)dµ .

and can be used to construct the posterior probability p(Z = z | DT ), provided that a well-specified
parameter prior p(µ | z) is known for each latent state z. In general, the constraint µ ∈ Hz means
that no closed-form expression exists, and computing it exactly is intractable. In principle, we could
appeal to variational inference (Jordan et al., 1999) for an approximation, and if a strong parameter
prior p(µ | z) is available, this can offer substantially more information to the learner than the
ordering o1,z ⪰ o2,z ⪰ ... ⪰ ok,z implied by z. In the extreme case that p(µ | z) is a delta function,
this coincides with the latent bandit problem of Hong et al. (2020a). As we try to minimize the
information needed about the latent variable, we assume that no parameter prior is available.

Without a parameter prior, the likelihood p(rt | at, z) is not fully defined, but we can construct an
upper bound on the likelihood by considering the mean configuration with the highest likelihood for
the data restricted to the available orderings implied by Z . For all states z,

L(DT | Z = z) =

∫
µ∈Hz

p(µ | z)
T∏

t=1

p(rt | at,µ, z)dµ ≤ sup
µ∈Hz

T∏
t=1

p(rt | at, µat) .

With Gaussian rewards, maximizing this upper bound corresponds to minimizing the mean squared
error of µ in predicting the observed reward, constrained to the setHz . Thus, under the assumption
that z is the correct latent state, we may estimate the mean parameters as follows.

µ̂z := argmin
µ∈Hz

−ℓ(DT | µ), where − ℓ(DT | µ) ∝
T∑

t=1

(rt − µat
)2

σ2
(3)

5



With {µ̂z} the minimizers of (3) for all z, we can construct an optimistic posterior estimate,

∀z : p̂(z | Dt) :=
1

α
p(Dt | µ̂z) . (4)

where α is the normalization constant. Note that this is an approximation as the bound p(Dt | µ̂z) ≥
p(Dt | z) affects also the normalization constant of the posteriors: The looser the bound for one state,
the lower the posterior probability of other states.

We design our method, lpbTS (Algorithm 1) for regret minimization by selecting the optimal arm for
a state sampled from the approximate posterior (4). The constrained maximum-likelihood estimation
(MLE) problem in (3) solved for each state is a quadratic program with linear inequality constraints.
We show below that it can be solved using off-the-shelf solvers for isotonic regression (Barlow and
Brunk, 1972). We discuss the computational complexity of lpbTS in the Appendix.

Proposition 2. Let na =
∑T

t=1 1[at = a] and define wa = na

σ2
a

. Next, let Oz = (o1, ..., ok) be the
preference ordering of latent state z. Then, the solution to the isotonic regression problem with
outcomes ya = 1

na

∑
t:at=a rt and sample weights wa

minimize
µ∈Rd

k∑
a=1

wa(µa − ya)
2 subject to µok ≤ µok−1

≤ ... ≤ µo1

solves the constrained MLE problem in (3). A proof is given in Appendix C.

4.2.1 On the scaling of regret with latent states, actions and constraints

In Section 4.1, we gave a simple procedure that achieves O(
√
min(k,m)T ) regret on the latent

preference bandit problem by restricting the action set to the ≤ m arms that are optimal in at least
one latent state. Although we don’t prove this formally, we should expect a similar regret bound to
be provable for lpbTS, by appealing to general results (Geyer, 1994) which state that constrained
MLE has asymptotic variance that is no worse than unconstrained MLE (as used in many MAB
algorithms), provided that the true parameter lies in the constraint set, which it does here. Indeed, in
our experiments, both lpbTS and mTS (Hong et al., 2020a) vastly outperform an uninformed MAB
algorithm, even when restricting the number of arms as described above. This gap is not predicted by
worst-case upper bounds for mTS and MAB algorithms.

The empirical performance of lpbTS is affected by the nature and number of order constraints. For k
arms, there are k! possible orderings. Thus, even when m grows linearly with k, the space of possible
parameter vectors is reduced by an O(k!) factor compared to an unconstrained problem. The effect of
this is largest when many of the constraints in (3) are active for states z′ that are not the ground-truth
state z∗, and their MLE estimate projects the empirical reward means onto Hz′ . The more active
constraints, the larger the projection and the smaller the likelihood of observed rewards under z′. As
a toy example, assuming that orderings Oz are randomly selected from all possible permutations of
the k actions without replacement, the probability that two such orderings differ in only two positions
is
(
k
2

)
/(k! − 1) (see Appendix F). For large k, this probability is vanishingly small. For example,

with k = 10, this probability evaluates to approximately 45
3,628,799 ≈ 1.24× 10−5. Given that m is

typically much smaller than k!, the ground-truth state will stand out even more as k grows. This
explains why subsampling the action set as in Section 4.1 may achieve surprisingly low worst-case
regret but performs substantially worse empirically than algorithms exploiting latent structure.

5 Experiments

We compare our algorithm lpbTS, on both synthetic and realistic tasks, to: i) standard MAB
Thompson Sampling (TS) (Thompson, 1933a; Russo et al., 2018) that is oblivious to the latent state
structure, initialized with Gaussian priors and using the ground-truth variance of the reward, ii) TS,
top arm subset (see Proposition 1), and iii) mTS (Hong et al., 2020a), Thompson Sampling with a
perfect latent variable model, including the exact reward mean vectors for all arms and latent states.

5.1 Synthetic Experiments

We first consider a synthetic bandit environment designed to simulate a well-specified LPB setting.
The environment is parameterized by fixable variable numbers of k arms and m latent states. For
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Figure 2: Synthetic experiment, cumulative regret compared to baselines (m = 5,K = 10, N = 50).
lpbTS (Ours) is comparable to latent bandit baselines when instance rewards lie in the same scale
(Left) and outperforms baselines when instance rewards in different reward scales (Right)

.

given k and m, for each latent state z ∈ [m], a random preference ordering (permutation) Oz =
(oz,1, ..., oz,k) of the arms is generated without replacement. Rewards are Gaussian distributed,
with variance σ2 = 1. The mean reward for arm a in state z, µa,z is based on its position in Oz ,
ensuring a strictly decreasing sequence of means along the permutation, with the optimal arm in each
state, oz,1 assigned mean µoz,1,z ∼ U(C + ∆k,C + ∆k + 1). We use C = 9, and ∆ = 0.2. For
subsequent arms oz,j , j ∈ {2, . . . , k}, the mean is defined recursively as µoz,j ,z = µoz,j−1,z−∆−U ,
where U ∼ U(0, ϵ) with ϵ = 0.05. We also allow for reward scales to vary among instances in
the same latent state, by having a larger draw interval for the mean reward of the optimal arm:
µ̄oz,1,z ∼ U(C̄ +∆k, C̄ +∆k + γk) with C̄ = 6 and γ = 0.4, and subsequent arm means defined
recursively as before. We conduct experiments with N = 50 independent samples of instance means
per latent state, each having T = 200 rounds. We report all the configurations of k,m, T and N in
the results presented. We use cumulative regret over T , and average regret at final round T as the error
metrics. We report these as averages over m×N independent instances, and their corresponding
standard deviation as errors. We also report the average active constraints in lpbTS, reported at the
final round T for each value of the varied parameter, with standard deviation as the error.

5.2 MovieLens Experiments

For a realistic personalisation setting, we construct a task based on the MovieLens (Harper and
Konstan, 2015) datasets where actions represent movie choices, rewards are ratings of movies, and
latent states are groups of users. See Appendix B for a full description. First, users are clustered into
latent states based on their real-world sparse movie preference ratings. Then, preference orderings
for all clusters are learned using Bradley-Terry Models (BTMs) (Bradley and Terry, 1952) and used
to define reward models assigning an average rating in µa,z ∈ [1, 5] to each movie. Personalized
rating scales for each instance are created by drawing a random rating interval defined by the smallest
allowable interval length, ζ = 1.5. For each experiment, we sample 100 random users and do 200
rounds of movie ratings per user, where at each round, 300 genre-diverse movies are sampled from
the set of available movies to form the active action set. We evaluate how well lpbTS performs
compared to baselines i) when movie ratings for users of the same latent state are in the same absolute
scale, ii) when individual ratings could vary in scale for users, and iii) when using a learned latent
preference ordering model {(z, Ôz)} (see Appendix B) rather than the ground-truth model, to study
the effects of possible errors in model fit and latent state recovery. Cumulative regret results are
reported as averages and standard deviations over user instances. Additionally, we report the average
of movie ratings achieved by the algorithms, standardized with z-score standardization per user to
ensure consistency when rewards can vary in scale, together with standard errors.

5.3 Results

LPB structure benefits exploration, and is robust In Figure 2 (Left), we see that lpbTS is
comparable in performance to mTS, in the comparable convergence of the cumulative regret, when
instance reward means have a fixed reward scale in the latent states. However, mTS outperforms

7



10 20 30 40 50
Number of Arms and States (k = m) (N=50)

0

2

4

6

8

Av
er

ag
e 

R
eg

re
t a

t T
=

20
0

mTS
lpbTS
TS, top arm subset
TS

10 20 30 40 50
Number of Arms and States (k = m) (N=50)

0

10

20

30

40

Av
er

ag
e 

Ac
tiv

e 
C

on
st

ra
in

ts
 a

t T
=

20
0

lpbTS active constraints

(a) Varying the number of arms k, and m = k (N = 50, T = 200, k ∈ [5, 10, 20, 30, 40, 50]).
Left: Observed average regret at T = 200. Right: Observed average active constraints.
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(b) Varying the number of latent states m (k = 20, N = 50, T = 200,m ∈
[5, 10, 20, 50, 100]). Left: Observed average regret at T = 200 Right: Observed average
active constraints at T = 200.

Figure 3: Synthetic experiment, instance rewards in different scales. When m = k and k grows, the
true latent state stands out more as its closest neighbors become more different with high probability.
When m increases with k fixed, it is possible to assign more distinct means and orderings, reducing
the structural benefit of latent bandits (lpbTS, mTS) over unconstrained methods (TS).

lpbTS as it converges quicker, with a lower variance because of it’s knowledge of the true latent
reward means. lpbTS has to estimate these latent means with noisy rewards. Adding the ordering
constraints O is vastly beneficial compared to no stucture as in TS. Unsurprisingly, TS, top arm
subset is also poor, because it does not actually exploit structure despite achieving the upper bound.
In Figure 2 (Right), we see the benefit of using a more general latent structure O compared to latent
mean vector of rewards: Cumulative regret for lpbTS converges quicker than that for mTS with a
visibly lower variance. This is because the latent model comprising mean vectors is misspecified
when absolute reward scales can vary for different latent state instances.

LPB characteristics become explainable from observed active constraints In Figure 3a, we
observe that as k and m = k increase, the average regret for mTS also increases while that of
lpbTS is fairly constant. This is because instance rewards have different scales, and the draw interval
for the mean reward of the optimal arm grows with ∆k. If the interval was fixed, mTS would still be
worse than lpbTS, but would not grow this way (e.g. see Figure 3b). We also see that the number
of active constraints grow. This is because m = O(k), but the number of possible permutations
grow like k!, so the probability of having large differences between states grows when m = k and
k grows. This is not predicted by a O(

√
min(k,m)T ) bound since m = k. It is explained by the

fact that the true latent state stands out more with high probability, and the empirical isotonic means
µ̂z become less likely to align with the neighbor states (the most confusable states) relative to the
true state, resulting in a higher number of active constraints. In Figure 3b, we see that when the
number of latent states is increased with k fixed, the average regret increases in mTS, lpbTS, and
TS, top arm subset until m = k at which point it flattens. This can be explained by the worst-case
O(

√
min(k,m)T ) bound. We defer additional empirical results and discussions aligning with these

8
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(a) Movie ratings in the same scale for users in a latent state
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(b) Movie ratings in different scales for users in a latent state

Figure 4: MovieLens Experiment, 20M Dataset. Results match theory: lpbTS (Ours) is comparable
to mTS in (a), outperforms in (b), and the two-stage recovery of O is empirically validated.

insights to Appendix I, in Figures 6a-6c for varying ∆, k(with m fixed), and σ, and Figures 7b-??
for instance rewards in the same scale.

MovieLens results are aligned Results from MovieLens experiments are consistent with the theory
and synthetic results, where lpbTS is comparable (Figure 4a, 20M) to mTS (which uses the oracle
ground truth model) when ratings are in the same scale for the latent states, and mTS is worse
(Figure 4b, 20M) when ratings are in different scales. Further, lpbTS with an offline recovered model
is competitive compared to lpbTS, oracle ground-truth model, albeit biased especially when user
ratings are in different scales. We re-iterate that recovering latent models is a key ingredient for latent
bandits, and we empirically demonstrate a method to recover them for Latent Preference Bandits with
our two-stage recovery, with many actions. Results for 1M and 32M datasets are left to Appendix I.

6 Conclusion

We have proposed Latent Preference Bandits (LPB), a novel bandit problem where instances share
structure based on a latent variable that determines the preference ordering of actions but not their
rewards. We design the algorithm lpbTS for regret minimization in this setting by sampling from an
approximate posterior of the latent state, constrained by the set of possible orderings. We demonstrate
that, despite using less information, lpbTS is competitive with latent bandit algorithms that have
full knowledge of the reward distribution of each arm when all instances of the same state have the
same distribution, and outperforms them when individual rating scales differ between instances who
share the same preference ordering. The benefit over uninformed bandit algorithms grows when
the number of latent states (orderings) is small relative to the number of arms. A limitation of our
algorithm is that it requires a model of the preference ordering of all latent states. However, in our
experiments on movie ratings, we find that a learned model performs comparably to the ground truth.
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A Notation

A list of common notations is given in Table 1. Generally, capital Roman letters denote random
variables and lower-case Roman letters denote constants or observations or random variables. The
sequence Oz is an exception since it is not random. Caligraphic Roman letters denote sets.

Table 1: Common notation

s, t Time indices
T Time horizon
A Set of available actions
a A single action in A. at is the action at time t
Z Set of latent states
Z Latent variable on Z
z A single latent state in Z
Ra Stochastic reward for action a
rt Observation of reward at time t following action at
µa Expected reward under action a, µa = E[Ra]
σa Standard deviation of reward under action a, σ2

a = V[Ra]
µ Vector of reward means for all actions
a∗ Action with the highest expected reward
µ∗ Optimal reward, reward of optimal action
µa,z Expected reward under action a in latent state z
σa Standard deviation of reward under action a in latent state z
µz Vector of reward means in latent state z for all actions
Hz Set of valid reward means in latent state z, µz ∈ Hz

H Set of globally valid reward means, µ ∈ H = ∪z∈ZHz

a∗z Action with the highest expected reward in latent state z
µ∗
z Optimal reward for any action in latent state z

µ̂a, µ̂, µ̂a,z, µ̂z Estimates of reward means corresponding to the above
π Decision making policy to select at
Reg(T ) Cumulative regret until horizon T
M Latent-variable model
Oz = (oz,1, ..., oz,k) Preference ordering of actions for latent state z
ia,z Rank of action a under latent state z
ρ Separation parameter for preference probability
∆ Separation parameter for reward means
R̃t Preference feedback at time t
DT History of observations up to time T
wa Weight parameter in isotonic regression

A.1 Errata

• Line 291: Typo: There’s an extra "increase" - removed
• Line 299: Typo: "compared to lpbTS the" - "compared to lpbTS,"
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B Details on the MovieLens experiments

For a real-world personalisation setting, we do experiments on the MovieLens (Harper and Konstan,
2015) datasets, using the 1M, 20M and 32M versions. For each dataset, we first filter out movies that
have less than 200 ratings, and users who have rated less than 200 movies. The resulting sizes are 1M:
1,589 users, 1,132 movies, 498,677 ratings, 20M: 26,826 users 6,236 movies, 11,905,303 ratings,
32M: 42,197 users 8,777 movies, 19,832,758 ratings. We use k = #movies after filtering. We then
obtain a train-test split on users with a split ratio of 0.5, and further split the test user set into a bandit
inference set, and an “offline estimation” set with a split ratio of 0.5. To get the ground-truth latent
preference orderings O, a two-stage preference ordering recovery proceeds as follows: i) KMeans
clustering on the training set, with 5 clusters (m = 5) on the sparse ratings. ii) For all users assigned
to a cluster z, the cluster-specific preference orderings for all movies are obtained by fitting preference
orderings on the users’ movie ratings, with Bradley-Terry Models (BTMs) (Bradley and Terry, 1952),
see Appendix H. Our two-stage BTM-based recovery yields a set of βz,a ∈ [0, 1], z ∈ [m], a ∈ [k]
where βz,a define the preference strength for movie a in cluster z after sigmoid transformation,
and Oz is the indices of the decreasing sort of βz . This two-stage preference ordering recovery is
motivated by our observation that the recovery is comparable in performance to a BTM Expectation-
Maximization (EM) approach for latent preference recovery, like the one proposed by Vigneau
et al. (1999), see Appendix Figure 5. For a user at bandit time, their true z (obtained, using the
KMeans model fit in the two stage recovery) is used to get the environment reward. The environment
reward for a user in latent state z, and for movie k is obtained as N (β̄z,k, 0.5), where β̄z is a
scaling of βz to the MovieLens rating scale [1, 5] using β̄z = 1 + 4 × βz−min(βz)

max(βz)−min(βz)
. We also

allow for instance rewards to vary in scale to ¯̄βz computed as: ¯̄βz = η + (υ − η) × β̄z−1
5−1 where

η is their possible minimum rating with η ∼ U(1, 5 − ζ), and υ is their possible maximum rating
with υ ∼ U(η + ζ, 5) and ζ is the allowable minimum rating interval with ζ = 1.5. For varying
individual scales, we only consider reward randomness due to the random rating perturbation.

For each experiment, we sample 100 users and do 200 rounds per user, where at each round, 300
genre-diverse movies are sampled from the set of available movies. In our experiments, we aim to
compare how well our lpbTS algorithm performs compared to baselines for the following: i) Settings
where movie ratings for users belonging to the same latent state are in the same absolute scale, and
when individual ratings could vary in scale for users. ii) How well our algorithm performs with an
offline recovered latent preference ordering model, that could have recovery errors. To recover this
latent preference ordering model, we use the “offline estimation” data, with uniformly collected
movie rating logs between 200 and 300 per user, for both settings in i). This also provides insights into
the quality of the two-stage latent preference order recovery. Cumulative regret results are reported
as averages over user runs, with standard deviation errors. The average movie ratings over users is
also reported. To ensure consistency when rating scales vary, the average ratings are standardized
with z-score standardization per user and errors reported as standard errors of the mean.
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C Proof that isotonic regression solves the constrained MLE problem

Proposition 3. Let na =
∑T

t=1 1[at = a] and define wa = na

σ2
a

. Next, let Oz = (o1, ..., ok) be the
preference ordering of latent state z. Then, the solution to the isotonic regression problem with
outcomes ya = 1

na

∑
t:at=a rt and sample weights wa

minimize
µ∈Rd

k∑
a=1

wa(µa − ya)
2 subject to µok ≤ µok−1

≤ ... ≤ µo1

solves the constrained MLE problem in (3).

Proof. We show that the isotonic regression objective is equal to (3) up to a constant. We have

k∑
a=1

wa(µa − ya)
2 =

k∑
a=1

wa(µ
2
a − 2yaµa + y2a) =

k∑
a=1

wa(
1

na

∑
t:at=a

[µ2
a − 2rtµa] + y2a)

=

k∑
a=1

1

σ2
a

(
∑

t:at=a

[µ2
a − 2rtµa + r2t ] + y2a −

∑
t:at=a

r2t
na

) =

T∑
t=1

(µ2
at
− r2t )

σ2
at

+ C ,

where C is a constant w.r.t. µ. Thus minimizing the LHS and RHS yields the same solution.

D A note on relative feedback

Dueling bandits (Yue and Joachims, 2009; Sui et al., 2018; Bengs et al., 2021) are the simplest-to-
analyze as rewards are observed in the same format as the latent state–as relative preference feedback.
Let DT = ((at, a

′
t, r̃t))

T
t=1 be a sequence of preference feedback events where at, a

′
t ∈ [m] are two

competing actions and r̃t ∈ {0, 1} indicates which action was preferred. Assuming that there are
latent, noisy and continuous rewards rt, r′t for the two actions, let R̃t = 1[Rt ≥ R′

t] indicate noisy
preferences for at over a′t and r̃t its realization.

If for any latent state z ∈ [m], there exists an (unknown) margin parameter ρ > 0 such that most of
the time, with a margin ρ, the reward for a is higher than the reward for a′, if a is preferred to a′ then,

p(R̃t = 1 | at, a′t, z) ≤
{

1
2 − ρ, at ⪰z a′t
1, otherwise

provides a crude upper bound on the likelihood of a single reward from DT under z. In other
words, the probability of observing rt > r′t is less than 1/2 − ρ if the action a′t has lower rank
than at. Defining ni(z) to be the number of observed inversions of the rank imposed by z ni(z) =∑T

t=1(1[Iat
(z) > Ia′

t
(z)] ̸= 1[rt ≤ r′t]) then, we can upper bound the full likelihood under z as

p(D | z) ≤ (
1

2
− ρ)ni(z) · 1T−ni(z) ≤ 2−ni(z) (5)

and, likewise, the posterior p(z | D) ∝ p(D | z)p(z).
Bounding the posterior as in (5) allows us to rule out candidate latent states as the probability decays
with the number of inversions, and a similar posterior sampling algorithm like lpbTS for preference
feedback can be obtained.

E Absolute to relative feedback

Absolute reward feedback can always be turned into preference feedback. For example, plays
and rewards (a1, r1), (a2, r2), (a3, r3), (a4, r4) can be paired up consecutively: (a1, a2,1[r1 >
r2]), (a3, a4,1[r3 > r4]). This ensures that different pairs comprise independent events, unlike, say,
an all-pairs comparison. However, this procedure is likely very inefficient, statistically. Rewards
obtained for each action provide much more information than is used by considering the pairs of
most recent actions. Moreover, the algorithm does not rule out playing the same action twice, which
means it is prone to getting stuck in local optima.
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F Rarity of Similar Preference Orderings in LPB

Observation 1. Rarity of Similar Preference Orderings. Consider k actions in the LPB framework,
with Oz1 and Oz2 as two distinct preference orderings drawn randomly from the set of all permutations
of k actions. The probability that Oz1 and Oz2 differ in exactly two positions is:

P (|{i | Oz1(i) ̸= Oz2(i)}| = 2, i ∈ [k]) =

(
k
2

)
k!− 1

Proof. Consider two distinct random permutations Oz1 and Oz2 of k actions. We need to find the
probability that they differ in exactly two positions, i.e., |{i | Oz1(i) ̸= Oz2(i)}| = 2, i ∈ [k].
Define the relative permutation τ = O−1

z2 ◦Oz1 . The differing positions are the non-fixed points of
τ (where τ(i) ̸= i), so τ must be a transposition, swapping two elements. The number of possible
transpositions is

(
k
2

)
. The total number of ordered pairs (Oz1 , Oz2) with Oz1 ̸= Oz2 is k! · (k!− 1).

For each transposition τ , there are k! pairs where Oz2 = Oz1 ◦ τ , since Oz1 can be any permutation.
Thus, the number of favorable pairs is

(
k
2

)
· k!.

Therefore, the probability is: (
k
2

)
· k!

k! · (k!− 1)
=

(
k
2

)
k!− 1

15



G Expanded Algorithm: lpbTS (Thompson Sampling for Latent Preference
Bandits)

We provide an expanded algorithm for lpbTS in Algorithm 2.

Algorithm 2 : lpbTS (Thompson Sampling for Latent Preference Bandits)

1: Input: Number of arms k, latent states m, ordering matrix O ∈ Rm×k, noise σ
2: Initialize: For each arm a ∈ [k], set Na = 0, Sa = 0, µ̂a = 0; for all z ∈ [m], set logP1(z) =
− logm; set t← 0

3: while True do
4: if t = 0 then
5: Select At ∼ Uniform([k])
6: else
7: Compute normalized posterior:

Pt(z) =
exp(logPt(z))∑m

z′=1 exp(logPt(z′))
.

8: Sample Bt ∼ Pt(z)
9: Select At = O[Bt, 0]

10: end if
11: Observe reward Rt

12: Update: NAt
← NAt

+ 1, SAt
← SAt

+Rt

13: Set µ̂At =
SAt

NAt
(if NAt > 0)

14: for each z ∈ [m] do ▷ Proposition 2
15: Perform isotonic regression on the sequence {µ̂O[z,0], . . . , µ̂O[z,k−1]} with weights
{NO[z,0], . . . , NO[z,k−1]}, obtaining estimates µ̂z[O[z, i]] for i = 0, . . . , k − 1.

16: end for
17: for all z ∈ [m] do
18: Update: ▷ (4), (3)

logPt+1(z) = logPt(z)−
(
Rt − µ̂z[At]

)2
2σ2

.

19: end for
20: Normalize {logPt+1(z)} ▷ log-sum-exp trick
21: t← t+ 1
22: end while

Computational Complexity. The lpbTS algorithm has a computational time complexity of
O(Tmk), where T is the time horizon, m is the number of latent states, and k is the number
of arms. This complexity is primarily from the O(mk) cost per iteration, due to performing isotonic
regression for each of the m states on sequences of length k, repeated over T iterations. The space
complexity is O(mk), dominated by the storing of the ordering matrix O ∈ Rm×k, with additional
O(k +m) space for arm and latent state variables being relatively minor.
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H Two-Stage Latent Preference Order Recovery

To recover the Latent Preference Order, we rely on methods for extracting preferences from pairwise
comparisons (Bradley and Terry, 1952) applied to our setting with latent structure. Vigneau et al.
(1999) demonstrated that BTMs can be fit for latent structure with an EM approach, and in Figure 5,
we provide an empirical comparison showing that our two-stage recovery compares favorably with
EM Latent Preference Order recovery.

The following provides an outline of our Preference Order Recovery

Extracting pairwise comparisons: For N instances, logged data with absolute feedback D†
T,i =

{(At,i, Rt,i)}Tt=1, i = 1, . . . , N,At,i ∈ [k] is used to obtain a dataset incorporating pairwise action
comparisons for all instances, captured as D = {(r(n), Y (n))}Nn=1, where r(n) ∈ Rk are rewards
(possibly incomplete), and Y (n) ∈ {0, 1}k×k has y(n)ij = 1 if item i beats j in observation n, else 0.

Clustering instances on observed absolute rewards: Observations are then clustered into m
groups D1, . . . ,Dm using {r(n)} (via KMeans with zero imputation for incomplete rewards) so that
each n belongs to a cluster z ∈ [m].

Fitting cluster BTMs: With acces to pairwise comparisons, the preference strengths of the actions
in each cluster can be obtained, defined with the utility, β(z) = (β

(z)
0 , . . . , β

(z)
k−1),

∑k−1
i=0 β

(z)
i = 0

(Bradley and Terry, 1952) where the utility defines the preference strength for each action. We use a
Logistic Bradley-Terry model: P (i ≻ j | z) = σ(β

(z)
i − β

(z)
j ), σ(x) = 1

1+e−x .

Bradley-Terry models (Bradley and Terry, 1952) per cluster are then fit, which give the cluster-data
log-likelihood for a cluster z as

ℓ(z)(β(z)) =
∑
i ̸=j

[
y
(z)
ij lnσ(β

(z)
i − β

(z)
j ) +

(
w

(z)
ij − y

(z)
ij

)
ln
(
1− σ(β

(z)
i − β

(z)
j )

)]
.

with agregated cluster pairwise comparisons

y
(z)
ij =

∑
n∈Dz

y
(n)
ij , w

(z)
ij =

∑
n∈Dz

I
(n)
ij ,

and where I
(n)
ij = 1 if pair (i, j) is observed in n.

Post-step Sigmoid: The real-valued cluster utilities obtained, β(z), are then passed through a
Sigmoid to restrict them to [0, 1], obtaining β̃(z) = σ(β(z)) = 1

1+e−β(z) . This Sigmod step also

enables us to model cluster reward mean vectors µ̂z , by scaling β̃
(z)
i to an appropriate range, for

example [1, 5] for movie ratings with the MovieLens dataset.

A Preference Order O is obtained simply by sorting β̃(z). Algorithm 3 provides a summary for this.

Algorithm 3 Latent Logistic Bradley Terry Model (BTM) for recovering O

Require: Data {(r(n), Y (n))}Nn=1, number of clusters m
1: Cluster {r(n)}Nn=1 into D1, . . . ,Dm (via KMeans) ▷ Pre-step clustering
2: for z = 1 to m do
3: for i, j = 0 to k − 1, i ̸= j do
4: y

(z)
ij ←

∑
n∈Dz

y
(n)
ij

5: w
(z)
ij ←

∑
n∈Dz

I
(n)
ij

6: end for
7: β̂(z) ← argmaxβ(z) ℓ(z)(β(z)) subject to

∑k−1
i=0 β

(z)
i = 0

8: β̃(z) ← σ(β̂(z)) ▷ Post-step Sigmoid
9: Oz ← argsort(−β̃(z))

10: end for
11: Output: {Oz}mz=1, {β̃(z)}mz=1
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Figure 5: Synthetic Recovery Experiment (O known, generated according to Section 5). Illustra-
tion of the average matching error between true and recovered orderings, computed as the average
of (1 - Kendall’s tau correlation) after optimal matching using the Hungarian algorithm. The error
decreases as the number of instances increases, indicating improved recovery accuracy with more
data. Our two-stage recovery compares favorably to an EM approach.
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I Additional Experiments

Here we outline additional results from our synthetic ablation study in Figures 6 and 7, and our
MovieLens experiments (with 1M Dataset in Figure 8, and 32M Dataset in Figure 9).
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(a) Varying the reward gap ∆ (k = 20,m = 10, N = 50, T = 200,∆ ∈ [0.1, 0.2, 0.5, 1.0]). Left:
Observed average regret at T = 200. Right: Observed average active constraints.
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(b) Varying the number of arms k (m = 10, N = 50, T = 200, k ∈ [5, 10, 20, 30, 40, 50]). Left:
Observed average regret at T = 200. Right: Observed average active constraints.

1 2 3 4 5
Noise Level ( ), (m=10, k=20, N=50)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e 

R
eg

re
t a

t T
=

20
0

mTS
lpbTS
TS, top arm subset
TS

1 2 3 4 5
Noise Level ( ), (m=10, k=20, N=50)

13.5

14.0

14.5

15.0

15.5

16.0

16.5

Av
er

ag
e 

Ac
tiv

e 
C

on
st

ra
in

ts
 a

t T
=

20
0

lpbTS active constraints

(c) Varying the reward noise σ (k = 20,m = 10, N = 50, T = 200, σ ∈ [0.5, 1, 2, 5]). Left:
Observed average regret at T = 200. Right: Observed average active constraints.

Figure 6: Synthetic experiment, instance rewards in different scales. With increasing reward sepa-
ration ∆, lpbTS maintains a stably low regret by leveraging structural constraints and mTS regret
only worsens because the the draw interval for the mean reward of the optimal arm grows with ∆k.
The active constraints in lpbTS increases as k grows because the number of possible permutations
increase like k!, so the probability of having large differences between states grows when k grows,
and there’s need to distinguish more alternative states. When reward noise increases, distinguishing
alternative states becomes harder as shown in the increase in active constraints in lpbTS.
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(a) Varying the number of arms k, and m = k (N = 50, T = 200, k ∈ [5, 10, 20, 30, 40, 50]).
Left: Observed average regret at T = 200. Right: Observed average active constraints.
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(b) Varying the number of latent states m (k = 20, N = 50, T = 200,m ∈
[5, 10, 20, 50, 100]). Left: Observed average regret at T = 200 Right: Observed aver-
age active constraints at T = 200.
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(c) Varying the reward gap ∆ (k = 20,m = 10, N = 50, T = 200,∆ ∈ [0.1, 0.2, 0.5, 1.0]).
Left: Observed average regret at T = 200. Right: Observed average active constraints.
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(d) Varying the number of arms k (m = 10, N = 50, T = 200, k ∈ [5, 10, 20, 30, 40, 50]).
Left: Observed average regret at T = 200. Right: Observed average active constraints.

Figure 7: Synthetic experiment, instance rewards in the same scale. Here, mTS outperforms in regret
due to it’s knowledge of true means. Active constraints observed in lpbTS explain the latent structure
characteristics described earlier more clearly. 21
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(a) Movie ratings in the same scale for users in a latent state
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(b) Movie ratings in different scales for users in a latent state

Figure 8: MovieLens Experiment, 1M Dataset. Results match theory: lpbTS (Ours) is comparable to
mTS in (a), outperforms in (b), and the two-stage recovery of O is empirically validated. Furthermore,
we see that when the offline stage Ô is trained with instance reward scales varying, it extracts
preferences that are more robust (ground truth O for both was trained with rewards in the same scale).
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(a) Movie ratings in the same scale for users in a latent state
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(b) Movie ratings in different scales for users in a latent state

Figure 9: MovieLens Experiment, 32M Dataset. Results match theory: lpbTS (Ours) is comparable
to mTS in (a), outperforms in (b), and the two-stage recovery of O is empirically validated. Further-
more, we see that when the offline stage Ô is trained with instance reward scales varying, it extracts
preferences that are more robust (ground truth O for both was trained with rewards in the same scale).

23



J Computation Infrastructure and Code

The synthetic simulations were run on a 2.6 GHz 6-Core Intel Core i7 Macbook laptop, with 16 GB
RAM. Ablation studies and MovieLens experiments were done on a compute cluster with 2 nodes,
each having an NVIDIA Tesla T4 GPU with 16GB RAM (Each with 4 Intel Xeon Gold 6226R CPU,
2.90GHz and 72 GB DDR4 RAM).

Code to reproduce the experiments is provided in a separate Zip file.
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K Broader Impact

Although the methods in this work are primarily methodological and do not have direct practical
implications, they are designed with sequential decision-making in healthcare in mind, and we hope
to contribute to speeding up the full impact of machine learning in sequential decision-making in
clinical settings. However, any application of our method in general personalization must be made
with caution and sufficient guard rails appropriate for the specific problem.
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