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Abstract

Most multi-armed bandit algorithms focus on ef-
ficient exploration, often oblivious to constraints
tied to exploration like the cost of switching be-
tween arms. Switching costs arise in real-world ap-
plications such as personalized medicine, in which
changes in treatment may require a wash-out pe-
riod where the patient is not taking any drug; or
in industrial applications where reconfiguring pro-
duction is costly. Unfortunately, controlling for
switching is significantly understudied outside of
regret minimization. In this work, we present a
formulation of the fixed-confidence pure explo-
ration problem with constraints on the arm switch-
ing frequency. We show how this problem lends
itself to batched bandits and give a lower bound
on the exploration time for any such algorithm.
We translate this idea into two algorithms inspired
by the track-and-stop framework, adapted to batch
plays with a limited number of arm switches per
batch. Finally, we demonstrate empirically that
our approach achieves quick stopping times, com-
parable to unconstrained algorithms, even when
constrained to a minimal switching limit.

1 INTRODUCTION

Sequential decision-making algorithms promise to improve
outcomes in diverse applications, from healthcare to e-
commerce, by systematically exploring alternative policies
for action. Classically, an effective algorithm strikes a good
balance between exploration and exploitation (Robbins,
1952; Chernoff, 1959; Lattimore and Szepesvári, 2020), con-
verging as quickly as possible to a good or optimal policy.
However, many applications come with costs tied to switch-
ing actions, and decision-making agents are incentivized

Preprint.

to use the same action repeatedly. For example, in health-
care settings such as in clinical trials (Aziz et al., 2021) and
treatment personalisation for chronic diseases (Kinyanjui
et al., 2023), switching treatments has costs for the patient:
every time a treatment is changed, the patient has to weave
off their current therapy and get used to the new treatment
and its potential side effects. In the personalization of web
pages or apps, switching content or interface frequently may
be inconveniencing or annoying to users, and in industrial
applications, switching actions could mean high costs of
reconfiguring production setups. It is therefore desirable
to limit the frequency of arm switches, even if they make
exploration more efficient.

In the multi-armed bandit (MAB) problem, an agent sequen-
tially samples actions from a set of unknown distributions,
and it aims to sample (explore) them in a manner that helps
it to learn about the underlying distributions; either quickly,
or with high confidence given an exploration budget (pure
exploration) (Bubeck et al., 2009; Jamieson et al., 2014;
Garivier and Kaufmann, 2016), or in order to minimize the
cumulative cost of choosing sub-optimal actions (regret min-
imization) (Thompson, 1933; Gittens and Dempster, 1979;
Lai and Robbins, 1985; Li et al., 2010). Switching in multi-
armed bandits has been extensively studied in the regret
minimization setting, (Arora et al., 2012; Dekel et al., 2014;
Rouyer et al., 2021; Amir et al., 2022; Li et al., 2023) but it is
less studied for pure exploration, possibly because satisfying
fixed-confidence correctness is difficult while minimizing
the total number of switches. Several works on regret min-
imization with switching costs use ideas around batching
the action selection in time. Although there are works on
batched bandits for pure exploration (Jun et al., 2016; Agar-
wal et al., 2017; Komiyama et al., 2021; Cao et al., 2023),
the area is still relatively under-explored.

In this work, we aim to understand controlling arm switch-
ing in fixed-confidence pure exploration bandits based on a
provided constraint on the switching rate. We achieve this by
structuring exploration in batches, selecting configurations
of arm plays with a limited number of switches to track opti-
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mal arm playing proportions derived from a lower bound on
the exploration time. The intuition can be explained as fol-
lows: In batched bandits, the arm plays can be planned at the
start of each batch to form contiguous segments of playing a
single arm. Switching then only occurs when changing from
one successive arm play segment to the next, or between
batches. If the number of arm switches in each batch is one
less than the permitted frequency per batch, the overall goal
can be met.

Main contributions. 1) We propose a formulation of the
fixed-confidence pure exploration problem with a constraint
on the frequency of arm switching (Section 2). 2) We pro-
vide a lower bound for the search time of any bandit algo-
rithm that solves this problem by limiting the arm switching
frequency using batches of uniform size (Section 4). 3)
We present two tracking-based algorithm variants, Sparse-
Projected Batch C-Tracking (SPB C-Tracking) and Sparse
Batch Configurations (SBC) (Section 5), and give an upper
bound for the exploration time of both. 4) We present em-
pirical results from a simulation study showing that our
algorithms identify the best arm in time comparable to
track-and-stop algorithms without switching constraints and
more quickly than existing successive-elimination batch
algorithms (Section 6).

2 PROBLEM FORMULATION

We study fixed-confidence pure exploration multi-armed
bandits with a limit on the rate of arm switches.

Let A = {1, ...,K} be a set of arms and µa ∈ R the ex-
pected reward for arm a ∈ A, with µ∗ = maxa∈A µa. A
bandit algorithm ϕ plays an arm at in successive rounds
t = 1, 2, ..., before terminating according to a stopping cri-
terion at time τ and recommending the arm âτ . The total
number of arm switches Sτ is the number of successive
plays where the arms differ, Sτ =

∑τ
t=2 [at ̸= at−1]. Our

goal is to design a search strategy ϕ to minimize the expected
number of arm plays τ required to identify an optimal arm
with confidence at least 1 − δ for a given δ > 0, while
limiting the expected rate of switching arms to α ∈ [0, 1].

minimize
ϕ

Eϕ[τ ]

subject to P(µâτ
< µ∗) ≤ δ

Eϕ[Sτ ] ≤ αEϕ[τ ]

(1)

To control the switching rate, we formulate a batched variant
of the problem. In batched bandits (Gao et al., 2019; Jin
et al., 2021a; Jun et al., 2016; Cao et al., 2023), arm plays
are planned in a sequence at the start of a batch, and the
rewards for all plays are given at the end for the bandit
to update its model. Using batches of fixed size B allows
us to ensure that all plays for a specific arm are made in
sequence within the batches, and the number of switches in
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Figure 1: Illustration of batched arm plays used to limit the
arm switching frequency in a 5-arm problem. The number
of plays of each arm is the same.

a batch Sb is determined by the number of distinct arms, see
Figure 1. With this, the number of switches in exploration
will be attributed either to switching between arms within
the batches when changing from one successive arm play
segment to the next, or to changing arms between batches.

Let Sb denote the number of switches in batch b. If Sb ≤ s
for all b, we can bound the expected number of switches by
Eϕ[Sτ ] ≤ Eϕ[β](s + 1) − 1; where Eϕ[β] is the expected
number of batches played by ϕ before terminating. The
bound covers the number of switches within a batch and the
switches from one batch to the next. As a result, the second
constraint in our objective above can be satisfied by keeping
the switches in the batches low, requiring that the constraint
in Eq. (1) holds for the right-hand side of the inequality
above, ∀b : Eϕ[β](s+1)−1 ≤ αEϕ[τ ] = αBEϕ[β]. If this
holds, with ⌊·⌋ the floor operator,

∀b : Sb ≤ s := ⌊αB − 1⌋ =⇒ Eϕ[Sτ ] ≤ αEϕ[τ ] . (2)

We can now re-formulate our goal to be to minimize the
expected number of batches β required to identify an op-
timal arm, with confidence at least 1 − δ, while limit-
ing the arm switches within the batch to be at most s ∈
{0, ...,min(K − 1, B − 1)},

minimize
ϕ

Eϕ[β]

subject to P
(
µâβ

< µ∗) ≤ δ

Sb ≤ s, ∀b ∈ N

(3)

In this work, all batches are planned deterministically. Ran-
domized algorithms could yield non-integer expected num-
bers of switches but we do not explore that.

3 RELATED WORK

Bandits with switching costs have been studied widely in
the regret minimization setting (Arora et al., 2012; Dekel
et al., 2014; Rouyer et al., 2021; Amir et al., 2022; Li et al.,
2023), and analyses typically focus on regret bounds in both
stochastic and adversarial settings. Recently, algorithms
based on variations of the Tsallis-INF and EXP3 bandit
algorithms have been presented. A key idea in these studies
is the use of blocks/batches to control the frequency of arm



switching (Arora et al., 2012; Rouyer et al., 2021; Amir
et al., 2022). We use this idea in pure exploration, where
studies of controlling switching in exploration are scarce.

Batched bandits are a setting where arms are planned in
batches, and played as planned before rewards are given
for the whole batch at once. This setting has been studied
widely in the regret minimization setting (Gao et al., 2019;
Jin et al., 2021a,b; Hambly et al., 2023; Kalkanli and Ozgur,
2021; Kalkanlı and Özgür, 2023) with the focus being how
many batches are required to attain the optimal cumula-
tive regret; using either static batch sizes or adaptive batch
sizes. In pure exploration, a few studies in batched bandits
exist (Jun et al., 2016; Agarwal et al., 2017; Komiyama
et al., 2021; Cao et al., 2023). All of these works focus on
arm elimination strategies that successively remove arms
from consideration, never to return. This is different to our
algorithms, which focus on tracking optimal arm playing
proportions in batches. Jin et al. (2023) presented results
with tracking proportions in batched pure exploration in the
asymptotic regime, but don’t consider switching limits.

Tracking proportions is ubiquitous in fixed-confidence pure
exploration since the idea of track-and-stop algorithms was
introduced by Garivier and Kaufmann (2016), along with
optimal instance-dependent asymptotic regime results. Our
work focuses on how these results can be used in the batch
setting with switching constraints. In this regard, Jourdan
et al. (2021) presented an interesting setting in pure explo-
ration for combinatorial bandits with semi-bandit feedback
which combines ideas from Garivier and Kaufmann (2016);
Degenne et al. (2019) and the combinatorial bandits litera-
ture. Although generally related in form with the combina-
torial bandit setting, our work differs in the successive play
segments allowed, as well as our goal of only identifying a
best arm compared to a super arm.

4 LOWER BOUNDING THE NUMBER OF
BATCHES IN PURE EXPLORATION

For fixed-confidence pure exploration, Garivier and Kauf-
mann (2016) presented a general lower bound for the ex-
pected stopping time E[τ ] of any δ-PAC multi-armed bandit
algorithm, i.e., one that returns the best arm with probability
at least 1− δ, for some δ > 0,

E[τ ] ≥ T ∗(µ) kl(δ, 1− δ) . (4)

where T ∗(µ)−1 := sup
w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)
.

Here, d(.) is the KL-divergence, and ΣK := {w ∈ RK
+ :∑K

a=1 wa = 1} is the simplex of possible arm playing
proportions. This lower bound is derived by considering the
optimal allocation of arm pulls w∗ to minimize the worst-
case stopping time specific to the instance µ while ensuring

that the probability of incorrectly identifying the best arm
does not exceed a pre-specified confidence level δ. The
term T ∗(µ) represents the inverse of the exploration time
associated by the best-case (supremum) playing proportions
w and the worst-case (infimum) alternative bandit model λ
(that differs from µ in its optimal arm),

Alt(µ) = {λ ∈ RK : argmax
a

λa ̸= argmax
a

µa} .

The formulation in Eq. (4) captures the inherent difficulty
of the best arm identification problem under the fixed-
confidence setting, ensuring that any optimal strategy will
asymptotically match this lower bound as δ approaches zero.
We can apply the same idea to bound the number of batches
necessary for exploration.

Let E[β] denote the expected number of batches β necessary
for any δ-PAC algorithm. Seemingly, we can extend the
reasoning of the lower bound in Eq. (4),

E[β] ≥ T ∗
b (µ) kl(δ, 1− δ) (5)

T ∗
b (µ)

−1 := sup
w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

⌈waB⌉ · d(µa, λa)

)
where wa represents the fraction of times that arm a is
played out of the total expected number of arm plays, and
⌈waB⌉ an upper bound on the expected number of times
arm a is played in each batch, with ⌈·⌉ the ceiling operator.
However, for small batch sizes, playing according to this
distribution of arm plays every batch is infeasible. And even
when batch sizes are large, this does not respect the arm
switching limit.

4.1 A LOWER BOUND ON THE NUMBER OF
BATCHES WITH SWITCHING CONSTRAINTS

The lower bound in Eq. (5) may not generally be attainable
by algorithms that obey the arm switching constraint in
Eq. (1) since this limitation is not represented in the bound.
Incorporating the switching constraint introduces a new
dimension to the problem where planning the plays over
successive batches becomes crucial. To match the lower
bound, we want to end up having played according to the
maximizer of Eq. (5), but we can’t play according to these
proportions every batch. Arms must be scheduled in a way
that minimizes the exploration time across batches, while
respecting the given constraints. To represent this in a lower
bound, we will study the optimal proportions of played
sparse batch configurations instead.

Given that the batch size is fixed and known, we can index
all possible configurations c of integer arm plays in a batch
that satisfy the desired switching limit. For a given number
of arms K, batch size B and switching limit s, we denote



this set CKB,s,

CKB,s :=

{
c ∈ NK :

K∑
a=1

ca = B, ∥c∥0 ≤ s+ 1

}
. (6)

Here, ∥·∥0 denotes the ℓ0-norm, which counts the number
of nonzero elements in the vector, ∥x∥0 :=

∑K
i=1 1[xi ̸=

0]. Each element c = [c1, ..., cK ]⊤ ∈ CKB,s represents a
configuration that can be executed in a single batch and
each coordinate ca represents the number of times arm a
will be played in the batch. We say that c is sparse if there
are arms a such that ca = 0.

Building on the above definition, define pc to be the propor-
tion of batches that implement configuration c during the
execution of the bandit algorithm. The total plays up of arm
a up to batch β can be expressed as:

E[Na(β)] =

β∑
b=1

∑
c∈CK

B,s

pcca .

We can now state a lower bound for batch-playing bandits
that obey the switching constraint.

Theorem 1. Let ΣC := Σ|C
K
B,s|−1 be the simplex over batch

configurations of size B that use fewer than s switches.
Given a confidence level δ ∈ (0, 1), for any algorithm that
returns the best arm with probability at least 1− δ, and for
any bandit problem µ ∈ RK , the following holds:

Eµ[β] ≥ T ∗
bc(µ) · kl(δ, 1− δ), (7)

where the characteristic time T ∗
bc(µ) is given by

T ∗
bc(µ)

−1 := sup
p∈ΣC

inf
λ∈Alt(µ)

K∑
a=1

∑
c∈CK

B,s

pccad(µa, λa). (8)

A proof is given in Appendix A. In Eq. (8), the supremum
is computed over the possible probabilities of choosing the
sparse configurations, thereby incorporating the switch limit
into the batch play optimization.

Although similar in form and derivation, our lower bound
differs from the result in Garivier and Kaufmann (2016) in
several key ways. First, arm plays are confined to batches
with switching constraints, meaning only a limited number
of unique arms are played in each batch. Their result has no
constraints on how arms can be played in sequence. Second,
the playing proportions in our result are defined for entire
batch configurations CKB,s of integer arm plays. As we will
see in the next section, unlike in the non-batched setting,
this does not translate as easily to a bandit algorithm.

Our approach to combining batch plays with switching con-
straints is related to combinatorial bandits with semi-bandit
feedback, see e.g., Jourdan et al. (2021). Solving this prob-
lem involves making decisions over combinations of several

arms at a time. Similarly, our method involves managing
combinations of arm plays within each batch, taking into
account the sparsity constraint to limit switching between
arms. The main difference with this setting is that our goal is
to identify a single optimal arm, not an optimal combination.

The configuration set CKB,s introduced in our method is typi-
cally very high-dimensional, scaling exponentially with the
number of arms. Restricting batches to contain at most s
switches, we have

∣∣CKB,s

∣∣ = s∑
i=0

(
K

i+ 1

)(
B − 1

i

)
configurations. See Appendix Tables 2,3 for examples.

The large dimensionality of CKB,s means that solving Eq. (8)
by enumerating all configurations is practically infeasible.
Moreover, the solution may not be unique since the combi-
nation of several configurations with different proportions
may yield the same expected number of arm plays. Consider,
for example, a problem with K = 3, B = 2, s = 1 and
c1 = [2, 0, 0]⊤, c2 = [0, 0, 2]⊤, and c3 = [1, 0, 1]⊤. Play-
ing with proportions p = [0.5, 0, 0.5]⊤ and p′ = [0, 0, 1]⊤

yields the same expected number of plays of each arm. As
a result, although configurations take the place of arms in
the lower bound, the implications for algorithm design are
quite different from the non-batched case.

5 TRACKING ALGORITHMS

Inspired by their analysis, Garivier and Kaufmann (2016)
introduced the idea of track-and-stop algorithms, designed
to track the optimal arm playing proportions w∗(µ̂) of the
lower bound in Eq. (4),

w∗(µ̂) := argmax
w∈ΣK

inf
λ∈Alt(µ̂)

(
K∑

a=1

wad(µ̂a, λa)

)
. (9)

based on an estimate µ̂ of the arm parameters, continuously
updated as more data is collected. A track-and-stop algo-
rithm plays arms following a tracking rule aiming for an
overall arm proportion as close to the optimal proportions
as possible, combined with a stopping rule for terminating
exploration. The stopping rule is a statistical test of whether
the past observations indicate, with a risk of at most δ, that
one arm has a higher average reward than the others.

Applying the track-and-stop framework in our setting re-
quires imposing a switching constraint in the tracking rule.
We cannot impose sparsity in the tracked proportions w∗

without destroying the solution to Eq. (9). If an arm a is
never played, wa = 0, the adversary λ can exploit this and
differ arbitrarily for that arm, rendering the lower bound
infinite. This is also evident from Lemma 4 in Garivier and
Kaufmann (2016) which would be violated if ∃a : w∗

a = 0.
Neither is it a good idea to play configurations to track



the proportions p∗ that solve Eq. (8). The solution is not
necessarily unique and, even if it is, the sheer number of
possible configurations makes exploring (tracking) all of
them infeasible. Moreover, the number of batches where a
configuration is played is not itself of interest, only that the
resulting distribution of arm plays is optimal.

Instead, we can attempt to track the optimal arm proportions
with suitably chosen batches. Suppressing superscripts and
subscripts for convenience, we let C = CKB,s.

Observation 1. If the optimal arm allocation w∗ in
Eq. (9) is “realizable” under C, i.e., ∃p∗ ∈ ΣC such that∑

c∈C p
∗
cc = w∗(µ̂), then p∗ are minimizers of Eq. (8).

This is clear since Eq. (8) is more constrained than Eq. (9).
Whenever every single-arm configuration is feasible, that
is, ∀a : 1aB ∈ C, where 1a is the one-hot binary vector
at a, the condition in Observation 1 is true. This argument
motivates constructing batch configurations that together
track the optimal proportions of arm plays given by Eq. (9).

5.1 TRACKING ARM PROPORTIONS WITH
BATCHES

We present an algorithm and two batch selection rules for
tracking optimal proportions of arm plays. Algorithm 1 pro-
vides a pseudocode outline of both variants. The general
strategy for tracking algorithms is to establish a set of goal
proportions w̄ and select arms to minimize the deficit of
played arm proportions to the goal. In the C-tracking proce-
dure(Garivier and Kaufmann, 2016), the goal proportion is
the cumulative sum of tracking weights over batches,

w̄(b) = B

b−1∑
i=0

wϵi(µ̂i) (10)

where wϵ(µ̂) is the L∞-projection of w∗(µ̂) in Eq. (9) onto
ΣK

ϵ = {w ∈ R+ :
∑

a wa = 1,mina wa ≥ ϵ}. The deficit
for arm a in batch b is then

da(b) := w̄a(b)−Na(b) , (11)

and the vector of deficits is d(b) = [d1(b), ..., dK(b)]⊤.
We aim to minimize the total positive deficit D(b) :=∑K

a=1(da(b))+, where (x)+ = 1[x > 0]x.

To this end, we define the selection rule,

c̃ ∈ argmin
c∈C

K∑
a=1

(
da(b)− ca

)
+

(12)

where ca are the number of plays of arm a in the batch
configuration c. In Section 5.2, we prove that this rule results
in an upper bound on the number of batches necessary to
find the best arm with high probability, in the high-certainty
asymptotic regime, δ → 0.

Greedy batch filling: Sparse Batch Configurations
(SBC) C-Tracking algorithm

Unlike the lower bound problem Eq. (8), Eq. (12) can ac-
tually be solved in polynomial time through a greedy algo-
rithm (see Appendix C). We call this variant of our algorithm
Sparse Batch Configurations (SBC) C-Tracking (see Algo-
rithm 1). However, the solution is not unique. For example,
if more than s+1 arms have positive deficit, there are cases
where the allocations to the selected arms in the batch can
be decided partially arbitrarily. Once the deficit of selected
arms has been removed, the choice of how to distribute
remaining plays between them won’t alter Eq. (12). The al-
gorithm in Appendix C puts the remaining allocation on the
arm with the largest remaining fractional deficit. Next, we
consider another algorithm variant that constructs batches
proportional to the arm deficits.

Proportional batch filling: Sparse Projected Batch
(SPB) C-Tracking algorithm

The Sparse-Projected Batch Tracking algorithm is an alterna-
tive method of selecting batch configurations that minimize
total arm play deficits. The allocations in the batch are now
distributed proportionally to the deficits of the selected arms.
The idea is to project the normalized positive deficits be-
tween expected and actual plays (d̄(b))+ = (d(b))+∑

a∈A(da(b))+

onto an (s+1)-sparse simplex and construct the batch config-
uration according to the resulting sparse proportions. Kyril-
lidis et al. (2013) showed that projection on a sparse simplex
(e.g. s + 1-sparse) is solved exactly using the polynomial
greedy selector and simplex projector (GSSP) by selecting
the largest (s+ 1) items and then re-normalizing.

Let N(b) = [N1(b), ..., NK(b)]⊤ be the vector comprising
the number of plays of each arm until batch b and define the
s switch-constrained ((s+ 1)-sparse) simplex,

ΣK
s+1 =

{
w ∈ RK

+ :

K∑
a=1

wa = 1, ∥w∥0 ≤ s+ 1

}
.

We compute per-batch arm proportions by projecting the
normalized positive deficits onto ΣK

s+1 (with GSSP):

ŵs+1(b) ∈ argmin
w∈ΣK

s+1

∥∥w − (d̄(b))+
∥∥
2
. (13)

The configurations are then obtained as c̃ =
integer(ŵs+1(b) ∗B) after rounding arm proportions, using
the procedure described in Appendix E.

Arm Selection and Stopping

Within each batch, the algorithms iteratively select the arm
at with the highest number of plays in the configuration,
plays it c̃at

times and observe the rewards (rt, ..., rt+c̃at−1).



Algorithm 1 Sparse Batch Configurations (SBC) and Sparse
Projected Batch (SPB) C-Tracking

Input: K arms, δ ∈ (0, 1), B: batch size
Input: s: batch switch limit
Output: β, âβ

1: b← 1, t← 1, Z1 ← 0, µ̂0 ← 0, N(1)← 0 ∈ RK

2: while Zb ≤ log
(

log(bB)+1
δ

)
do

3: Let ϵb ← (K2 + bB)−1/2/2 ▷ set ϵb = 1/K if
bB < 3K2

4: Compute wϵb−1(µ̂b−1) ▷ See Eq. (10)

5: Compute d(b) = B

b−1∑
i=0

wϵi(µ̂i)−N(b)

6: if SBC C-Tracking then

7: Let c̃ ∈ argmin
c∈CK

B,s

K∑
a=1

(da(b)− ca)+

8: ▷ Greedy batch filling (App. C)
9: else if SPB C-Tracking then

10: Let ŵs+1(b) ∈ argmin
w∈

∑K
s+1

∥∥∥∥w − (d̄(b))+

∥∥∥∥
2

11: and c̃ = integer(ŵs+1 ∗B)
12: ▷ Proportional filling (Eq. (16), App. E)
13: end if
14: while t ≤ bB do
15: Let ā← argmaxa∈A c̃ and c̄ = c̃ā
16: Play at, ..., at+c̄−1 with arm ā
17: Observe rewards (rt, ..., rt+c̄−1)
18: Nat

(b+ 1)← Nat
(b) + c̄

19: µ̂b,at
← 1

Nā(b+1)

∑t+cā−1
j=1 1[aj = ā]rj

20: t← t+ c̄ and c̃ā ← 0
21: end while
22: b← b+ 1
23: Compute Zb ▷ See Eq. (14)
24: end while
25: Return âβ = argmaxa µ̂β,a

After the batch, the arm estimates are updated. The process
repeats for batches until a criterion based on a confidence
threshold is met. We use Chernoff’s stopping rule as pre-
sented in Garivier and Kaufmann (2016) with statistic

Zb = max
a∈A

min
ã̸=a

Na(b)dµ̂(b)(a, ã)+Nã(b)dµ̂(b)(ã, a) (14)

where dµ̂(a, ã) = KL(µ̂a, µ̂a,ã) and µ̂a,ã is the weighted
average of µ̂a and µ̂ã, weighted by their arm plays. We use
the threshold Zb > log

(
log(bB)+1

δ

)
. At the stopping batch

β, the estimated best arm âβ = argmaxa µ̂β,a is returned.

5.2 AN UPPER BOUND ON THE STOPPING
BATCH

By proving that batch configurations selected according to
Eq. (12) track the optimal arm proportions in Eq. (9), we
show that both SBC and SPB C-Tracking in Algorithm 1
match the lower bound in Eq. (4) in the high-certainty limit.

Theorem 2. Let µ ∈ RK , B ≥ 1, s ∈ [B−1] be an instance
of the switch-constrained pure exploration problem with
confidence δ > 0. Assume that the optimal arm allocation
w∗(µ) is realizable under CKB,s (Observation 1) and let
α ∈ [1, e/2] and ρ(t) = O(tα). Then, using Algorithm 1,
and Chernoff’s stopping rule with threshold log(ρ(t)/δ),

lim sup
δ→0

E[βδ]

log 1/δ
≤ αT ∗

bc(µ) .

where T ∗
bc is the batch characteristic time from Eq. (8).

The result is proven in Appendices B–D: Lemmas 1–2 prove
that the deviation of any tracking rule minimizing Eq. (12)
is bounded and are used in Appendix B.3 to give a general
upper bound on E[βδ]. In Appendices C–D, we prove that
SBC and SPB C-tracking minimize Eq. (12).

Tightness of the bound Theorem 2 matches the lower
bound in Theorem 1. The parameters s and B are not vis-
ible in the bound but affect the batch characteristic time
T ∗
bc. Moreover, in the non-asymptotic case, the tightness

of the bound depends on s, B, and K. For any non-zero δ,
Lemmas 1–2 (see Appendix B) used to prove Theorem 2 es-
tablish that there is a batch number βϵ ≤ ((2K + 1)/(2ϵ))4

after which the proportion Na(b)/(bB) of plays of each arm
differs by at most 3(K − 1)ϵ from the optimal proportion
w∗

a(µ), with ϵ the C-tracking forced-exploration parameter.
In this regime, the bound is tighter for small s since the
bound on βϵ assumes that plays of an important arm can be
delayed by a whole batch due to the switching constraint.

Comparison to unconstrained setting. In the asymptotic
setting, the upper bound on the number of batches (Theo-
rem 2) matches the bound on the number of arm plays in
the non-batched case. This means we pay up to a factor B
to reach the same guarantee as in the unconstrained case.
This should not be surprising—in the worst case, s = 0,
we can play at most one unique arm in each batch but the
optimal proportions may be uniform. This is illustrated in
our experiments, where the switching constraint only limits
performance in the high-batch size setting (see Figure 6).

Extension to unrealizable allocations. Theorem 2 is re-
stricted to the realizable case for presentation since SPB and
SBC C-tracking are designed for this case. The bound can be
generalized to the case where unconstrained arm allocations
are not representable by CKB,s by replacing ΣK in Eq. (9)



by Σ̃K = {w : ∃p ∈ ΣC ,
∑

c∈C pcc = w} and carrying
forward to Eq. (12). The remaining analysis is unchanged.

6 SIMULATION EXPERIMENTS

In our experiments, we are foremost interested in investigat-
ing if we can achieve a low stopping time E[τ ] = BE[β]
while conforming to a given switching limit s during explo-
ration. We investigate the effects of different combinations
of s and the batch size B. As discussed in Section 2, s and
B are inherently tied, s := ⌊αB − 1⌋. For different batch
sizes, the choice of s will have a large impact on which arm
configurations can be played in a batch, and therefore on the
nature of exploration. We aim to validate this empirically.

We compare our SBC and SPB C-Tracking algorithms to
BatchRacing (Jun et al., 2016), a batched racing algorithm
that successively eliminates arms across rounds, starting
with the full set of available arms as a surviving set S1 = A.
In each batch of size B, it uses a round-robin algorithm to
determine plays in the batch uniformly. It is designed for top-
k best-arm identification; our setting is top-1. In each round,
BatchRacing uses upper-confidence bounds (resp. lower-
confidence bounds) to determine if there is any arm that
is confidently top-k (resp. not), and moves the arms to an
accepted, At (resp rejected, Rt) set. The arms moved to the
accepted or rejected sets are removed from the surviving sets
and this repeats until k arms are accepted, whereby it ends,
outputting the accepted set Aτ . In our setting |Aτ | = 1.

6.1 EXPERIMENTAL SETUP

The simulation setting presented comprises a set of 8
arms from Gaussian distributions, with means µ =
{0.8, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35} and standard de-
viation σ = 1. The algorithms (SBC and SPB C-Tracking,
BatchRacing and Track-and-Stop C-Tracking (Garivier and
Kaufmann, 2016)) are run with δ = 0.01, and a pull limit
of 20,000. We run experiments to investigate the effect of
varying a switching limit s in SPB C-Tracking. In these,
we set the number of switches Sb = s for all batches b,
rather than let them be bounded by s from above. We also
compare the effect of the batch size in SPB C-Tracking
and the BatchRacing baseline. We use the stopping time,
E[τ ] = BE[β], as the evaluation metric and we also com-
pare the stopping times of the batched algorithms to the
stopping time of the un-batched Track-and-Stop C-Tracking.
All experiments are done for 500 repetitions and results are
presented with means and standard deviation across runs.

6.2 RESULTS AND DISCUSSION

Algorithms tracking characteristics. Consider an illus-
trative example with K = 8, B = 64 and s = 2 where until
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Figure 2: Illustrative example showing arm selection for
SPB and SBC starting from the same accumulated arm plays
N(b) and desired proportions w̄(b) after b = 10 batches.
BatchRacing included for reference.
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Figure 3: Observed switches and stopping, along time in
batches for SBC and SPB C-Tracking (Ours) with s =
1, B = 32 vs BatchRacing (Baseline). SBC and SPB stop
quicker even with a restrictive switching limit.

batch b = 10, both algorithms have accumulated the same
number of arm plays and deficits (rounded):

w̄(b)/B = [1.6, 1.7, 1.6, 1.8, 1.1, 1.1, 1.1, 1.1]⊤

N(b) = [86, 99, 85, 136, 54, 52, 64, 64]⊤

d(b) = [15.6, 9.1, 17.9,−18.7, 14.5, 16.5, 4.5, 4.5]⊤

In deciding the next plays, SBC and SPB respectively yield
the following configurations, see Figure 2:

SPB: c̃ = [21, 0, 22, 0, 0, 21, 0, 0]⊤

SBC: c̃ = [16, 0, 31, 0, 0, 17, 0, 0]⊤

Both SBC and SPB select the arms with the largest deficit to
be included in the next batch (both are integer-optimal, see
Appendix D). SBC, with the greedy batch filling subroutine
(Appendix C), yields configurations where the remaining
batch allocation after removing integer deficits is allocated
greedily onto the arm with the largest fractional deficit in the
selected arms. For SPB, the batch is filled proportionally to
the deficits in the selected arms. BatchRacing is also shown
in Figure 2 with uniform plays across all arms, from the
round-robin procedure given that all arms are still in the
feasible set. See Appendix F for another example.

Limiting switching and optimality. In Figure 3, thicker
points in the horizon indicate that more of the repeated runs



0 1 2 3 4 5 6 7
Action (K=8, s=1, B=32, b=100 (t=3200 for T&S))

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
op

or
tio

n 
of

 p
la

ys

SBC C-Tracking (Ours)
SPB C-Tracking (Ours)
Track and stop C-Tracking

Figure 4: Proportions of arm plays for SBC and SPB (Ours)
after 100 batches (3200 plays, with B = 32, s = 1) match
well to C-Tracking (optimal, unbatched) after 3200 plays.
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Figure 5: Comparison of stopping times over switching
limits s ∈ {0, 1, 2, 3, 5, 7} in SBC and SPB C-Tracking,
and BatchRacing, with batch sizes B ∈ {8, 1024}. Track-
and-stop C-tracking is not batched.

have not stopped until that point. We see that both our al-
gorithms achieve faster stopping compared to BatchRacing,
even when constrained to a minimal switching limit (s = 1).
We see that the BatchRacing algorithm starts with the max-
imum possible switches in early batches and eventually
decreases in later batches, until s = 1. Successive elimi-
nation algorithms, including BatchRacing, which comprise
the bulk of the limited work in batched bandits in pure ex-
ploration (Jun et al., 2016; Agarwal et al., 2017; Komiyama
et al., 2021; Cao et al., 2023) will always exhibit this switch-
ing behaviour. These algorithms are expected to have a high
number of switches during exploration, as they always start
with the whole set of arms as the feasible exploration set.

The stopping times in Figure 5 show that, as expected, SBC
and SPB C-Tracking always outperform the BatchRacing
baseline. This can be explained by the algorithms’ charac-
teristic of tracking the optimal playing proportions from
the lower bound, Eq. (9). The stopping times for batch
sizes B ≤ 256 also match those of the unbatched (stan-
dard) Track-and-Stop C-Tracking which is unconstrained
in switching, so it switches almost every play during explo-
ration. The matching in stopping times is consistent across
different switching limits for the same batch size (Figure 5).
The proportions of arm plays also align closely (Figure 4),
which aligns with our theoretical result in Theorem 2.
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Figure 6: Effect of batch size on the stopping times for SBC
and SPB C-Tracking (s ∈ {0, 7}), and BatchRacing, with
B ∈ {8, 16, 32, 64, 128, 256, 512, 1024}.

In Figures 5 and 6, we also see that restricting arm switching
hurts exploration only when the batch size is large, for re-
strictive switching limits. Furthermore, with less restriction
in switching (s = K − 1), our results provide evidence that
it is possible to batch and still achieve comparable stopping
times with un-batched optimal pure exploration algorithms
like Track and Stop, even with large batch sizes.

These results are expanded in Appendix F with more combi-
nations of batch size B, and switching limit s. A simulation
with 16 arms is also included, and the results are consistent.

7 DISCUSSION

We have studied the problem of controlling arm-switching
in fixed-confidence pure-exploration and from our results,
we learn that it is possible to impose a switching constraint
for exploration by using batching, and then restricting how
often arms can be switched inside the batches. We derived a
lower bound (Theorem 1) for this, by considering feasible
batch configurations respecting switching constraints. While
our lower bound can theoretically provide algorithms that ex-
plicitly track the proportions pc of the configurations, these
proportions are defined for entire batch configurations, CKB,s,
preventing us from applying an exact tracking rule. How-
ever, we observe (Observation 1) that we can still leverage
the core tracking ideas for algorithm design by constructing
optimal batch configurations. Constructing configurations
turns out to be computationally feasible, as it reduces to a
polynomial-time problem.

We further presented the batched algorithms SBC and SPB
C-Tracking that constrain the switching frequency by play-
ing constructed optimal batch configurations. Our algo-
rithms empirically show that it is possible to achieve effi-
cient exploration even when constraining the arm-switching
frequency, and they perform well except under extreme con-
ditions, specifically when the batch size is large and the
switching constraint is stringent. We also provided an up-



per bound (Theorem 2) matching our lower bound, but an
open question from our result is whether we can derive a
tighter upper bound that explicitly accounts for switching.
A limitation of our approach is that the batch size of our
algorithms is not given by the problem, but is only a means
to control switching. We use a static batch size that may not
be optimal for efficient exploration and whose selection is
not obvious, as the optimal choice is problem-dependent,
so adaptively tuning the batch size is also an interesting
direction for future work.
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APPENDIX

Table 1: Table of commonly used notation

Symbol Description

K Number of actions/arms
A Set of arms, A = {1, ...,K}
a A single arm, a ∈ A
µa Expected reward of arm a
a∗ Optimal arm, a∗ = argmaxa µa

µ∗ Expected reward of optimal arm, a∗

τ Stopping time (in number of arm plays)
âτ Recommended arm at stopping time
Sτ The number of arm switches until time τ
α Constraint on the arm switching rate
δ Confidence parameter, δ ∈ (0, 1)
B Batch size, B ≥ 1
β Stopping batch (in number of batches)
Sb Number of arm switches inside batch b
s In-batch arm switching limit
T ∗ Characteristic time
ΣK Simplex over K arms, ΣK = {w ∈ RK :

∑
a wa = 1}

wa Arm playing proportion for arm a
λa Alternative bandit model
Alt(µ) Set of alternative bandit models with optimal arm that differs from that of µ
c Configuration of a single batch, c = [c1, ..., cK ]⊤

CKB,s Set of configurations of size as B integer plays of K arms, limited to s switches
Na(β) Number of plays of arm a until batch β
ΣC Simplex over elements in set C
µ̂ Estimated arm parameters
w̄(b) Desired (cumulative) arm proportions at batch b
da(b) Play deficit for arm a at batch b
wϵ(µ) Proportions L∞-projected onto simplex where each element has weight at least ϵ
c̃ Chosen batch configuration
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A PROOF OF THEOREM 1

Proof of Theorem 1: Consider δ ∈ (0, 1) and a bandit model µ ∈ RK , along with a δ-PAC strategy. For each block b ≥ 1,
let Na(b) represent the number of times arm a is drawn up to the end of block b. According to Garivier and Kaufmann
(2016, Lemma 1), the expected number of draws for each arm and the Kullback-Leibler divergence between two bandit
models with distinct optimal arms are related to the error probability δ:

∀λ ∈ RK : a∗(λ) ̸= a∗(µ),

K∑
a=1

Eν [Na(β)]d(µa, λa) ≥ kl(δ, 1− δ).

Rather than selecting a specific λ for each arm a to provide a lower bound on Eµ[β], we integrate the inequalities from all
alternative λs:

kl(δ, 1− δ) ≤ inf
λ∈Alt(µ)

K∑
a=1

Eµ[Na(β)]d(µa, λa)

Let CKB,s be the available integer playing configurations for plays corresponding to the desired sparsity and ΣC := Σ
|CK

B,s|
1 be

the simplex over sparse batch configurations. Then, we have

kl(δ, 1− δ) ≤ inf
λ∈Alt(µ)

K∑
a=1

Eµ

 β∑
b=1

∑
c∈CK

B,s

ca,b

 d(µa, λa) = inf
λ∈Alt(µ)

K∑
a=1

Eµ[β]Eµ

 ∑
c∈CK

B,s

ca

 d(µa, λa)

≤ Eµ[β] sup
p∈ΣC

inf
λ∈Alt(µ)

K∑
a=1

∑
c∈CK

B,s

pcca d(µa, λa),

where the last inequality arises because the probabilities of arm draws specific to each batch are less than or equal to their
maximum values. This substitution is made to derive a bound that applies to any δ-PAC algorithm.

B AN UPPER BOUND ON THE EXPECTED STOPPING TIME OF THE TRACKING
ALGORITHMS

We repeat Theorem 2 below.

Theorem 3. Let µ ∈ RK , B ≥ 1, s ∈ [B − 1] be an instance of the switch-constrained pure exploration problem with
confidence δ > 0. Let α ∈ [1, e/2] and ρ(t) = O(tα). Using Algorithm 1 with any selection rule that solves Eq. (12), and
Chernoff’s stopping rule with threshold log(ρ(t)/δ),

lim sup
δ→0

E[βδ]

log 1/δ
≤ α

B
T ∗(µ) .

where T ∗ is the characteristic time in the non-batched setting, Eq. (4).

To prove this result, our strategy will be to show that, despite planning arm plays in batches, we will track the optimal
proportions for the non-batched settings. To do this, we need to generalize two key lemmas due to Garivier and Kaufmann
(2016) for the batched setting. First, we will show that playing according to a selection rule like that of Algorithm 1 maintains
an error that is upper bounded by a constant w.r.t. the batch index. Second, we use this result to show that the tracking
rule ensures that the deviation of historical plays from the optimal playing proportion is bounded. At this point, we have
established all we need to follow the remainder of the proof of Theorem 14 in Garivier and Kaufmann (2016).

B.1 PROPORTION TRACKING WITH BATCH PLAYS AND A SWITCHING LIMIT

Lemma 1. Let K and B be positive integers, and let ΣK be the simplex of dimension K−1. For each arm a ∈ {1, . . . ,K},
define the expected cumulative number of plays after batch b as BPa(b) where for every b ≤ n, Pa(b) = pa(1)+ ...+ pa(b).
Let Na(b) denote the actual cumulative number of plays after batch b.



At each batch b, choose the batch configuration c̃b+1 ∈ CKB,s (a feasible configuration of arm plays that respects the batch
size B and switching limit s) such that:

c̃b+1 = argmin
c∈CK

B,s

K∑
a=1

(
B

b−1∑
i=0

pa(i)−Na(b)− c(a)

)
+

,

where
∑b−1

i=0 pa(i) represents the cumulative weight estimate for arm a up to batch b− 1.

Then, the maximum deviation between the actual and expected number of plays for any arm is bounded as:

max
1≤a≤K

|Na(b)−BPa(b)| ≤ B(K − 1).

Proof. We intend to prove the same bound for the two edge cases, which is when s = 0, implying that c̃b+1 contains only
one arm played B times, or s ≥ B − 1, meaning that any number of switches is allowed. Since the bounds are the same, the
intermediate cases s ∈ (0, B − 1) follow.

First, we prove by induction on b that:
max

1≤a≤K
Na(b)−BPa(b) ≤ B.

At batch b = 0, no plays have been made, so Na(0) = 0 for all arms a, and Pa(0) = 0 for all arms a. Therefore, the base
case is trivially satisfied:

max
1≤a≤K

Na(0)−BPa(0) = 0.

Assume that this holds for some b ≥ 0. Then, for a /∈ c̃b+1, Na(b+1)−BPa(b+1) = Na(b)−B(Pa(b)+p(b)) ≤ B(1−
pa(b)) ≤ B and for a ∈ c̃b+1, Na∈c̃b+1

(b+1)−BPa∈c̃b+1
(b+1) = c̃b+1(a)+(Na∈c̃b+1

(b)−BPa∈c̃b+1
(b+1)). Using the

fact that that
∑

a BPa(b+1)−Na(b) = 0, we know that, for any selected arm a ∈ c̃b+1, Na∈c̃b+1
(b)−BPa∈c̃b+1

(b+1) ≤ 0
or there was a non-selected arm a ̸∈ c̃b+1 that had a smaller value in the criterion. But if such an arm exists, it would
have been selected in place of a. This is true whether only one arm can be selected (s = 0) or any arm can be selected
(s = B − 1). Hence, for all a ∈ c̃b+1, c̃b+1(a) + (Na∈c̃b+1

(b)−BPa∈c̃b+1
(b+ 1)) ≤ B + 0 ≤ B.

It follows that for all terms:

max
1≤a≤K

|Na(b)−BPa(b)| = max

{
max

1≤a≤K
BPa(b)−Na(b), max

1≤a≤K
Na(b)−BPa(b)

}
≤ max

{
K∑

a=1

(BPa(b)−Na(b))+ , B

}

To complete the proof, we introduce the auxiliary variable, for every b ∈ {1, ..., n},

rb =

K∑
a=1

(BPa(b)−Na(b))+ .

and prove by induction on b that
rb ≤ B(K − 1).

To start, we note that the base case b = 1 holds trivially. Next, we’ll assume that the statement holds for some b > 1 and
prove that rb+1 ≤ B(K − 1). First, recall that the plays in batch b+ 1 are given by the selection rule

c̃b+1 = argmin
c∈CK

B,s

K∑
a=1

(BPa(b+ 1)−Na(b)− c(a))+ .

We’ll use the short-hand c = c̃b+1 for the remainder of this proof.

Define the play deficit for arm a at time b + 1 as da := BPa(b + 1) −Na(b + 1). We can separate the terms in the sum
making up rb+1 as follows,

rb+1 =
∑

a:c(a)=0

(da)+ +
∑

a:c(a)>0
da>0

da +
∑

a:c(a)>0
da≤0

0 .



For convenience, let c+ represent the terms in the second sum, c+ = {a ∈ [K] : c(a) > 0, BPa(b+ 1)−Na(b+ 1) > 0}
and c− the terms in the third, c− = {a ∈ [K] : c(a) > 0, BPa(b + 1) − Na(b + 1) < 0}. We also use the convention
a ∈ c⇔ c(a) > 0. We will consider two cases, one where c− = ∅ and one where it is not.

Case I: c− = ∅ ⇔ ∀a ∈ c : BPa(b+ 1)−Na(b+ 1) ≥ 0

In this case, all played arms have a remaining deficit, i.e., they have not yet caught up to the expected number of plays,
BPa∈c(b+ 1). We can re-write rb+1 as a function of rb as follows.

rb+1 ≤ rb +

K∑
a=1

[Bpa(b+ 1)− c(a)]1(BPa(b+1) ≥ Na(b+1))

= rb +

K∑
a=1

pa(b+ 1)1(BPa(b+1) ≥ Na(b+1)) −
∑
a∈c

c(a)1(BPa∈c(b+1) ≥ Na∈c(b+1))

≤ rb +B −
K∑

a=1

c(a) = rb +B −B = rb ≤ B(K − 1) .

The second to last inequality holds because, by assumption c = c+ and c(a) = 0 for all a ̸∈ c.

In the general case, some played arms may have no remaining deficit, and some do.

Case II: |c−| > 0⇔ ∃a ∈ c : BPa(b+ 1)−Na(b+ 1) < 0

In this case, the number of plays Na(b+ 1) for at least one played arm a ∈ c has surpassed the expected number of plays
BPa(b+ 1). This implies that there is no longer a positive deficit for the arm being played.

By construction, we can write rb+1 as follows.

rb+1 =
∑
a ̸∈c

(BPa(b+ 1)−Na(b))+ +
∑
a∈c+

(BPa(b+ 1)−Na(b)− c(a)) .

For any arm not selected, a ̸∈ c, the deficit before selection, BPa(b + 1) − Na(b), must have been smaller than the
pre-selection deficit for any selected arm, including those in c−. This holds true in both edge cases, s = 0 and s = B − 1.
Otherwise, a play for arm a would have been selected for the batch instead of a play for an arm in c−. Thus,∑

a ̸∈c

(BPa(b+ 1)−Na(b))+ ≤
∑
a ̸∈c

min
a′∈c−

(BPa′(b+ 1)−Na′(b))+ .

Further, for any arm a′ ∈ c−, BPa′(b + 1) − Na′(b + 1) = BPa′(b + 1) − Na′(b) − c(a′) ≤ 0 by definition, and so
BPa′(b+ 1)−Na′(b) ≤ ca′ ≤ B. Thus,∑

a̸∈c

(BPa(b+ 1)−Na(b))+ ≤
∑
a ̸∈c

B .

A similar argument can be used for any arm in c+. The remaining deficit after deciding on the plays must be smaller for
arms in c+ than what the deficit would have been if an arm play was moved from c+ to an arm in c−,

∀a ∈ c+ : BPa(b+ 1)−Na(b)− ca ≤ min
a′∈c−

BPa′(b+ 1)−Na′(b)− ca′ + 1

≤ min
a′∈c−

ca′ − ca′ + 1 = 1

Thus, whenever |c−| > 0, rb+1 ≤
∑

a̸∈c B +
∑

a∈c+
1 ≤ B(K − 1) . This last inequality is loose in general, but if only

one arm is played and no played arm have remaining deficit, it is tight.



B.2 TRACKING RULE CONVERGENCE

Lemma 2. For any batch b ≥ 1 and a ∈ A, any tracking rule that is optimal with respect to Eq. (12) (the problem in
Lemma 1) ensures that Na(b) ≥ B(

√
bB +K2 − 2K + 1) and that

max
1≤a≤K

∣∣∣∣∣Na(b)−B

b−1∑
i=0

w∗
a(µ̂i)

∣∣∣∣∣ ≤ B(K − 1).

where w∗ are the solution to Eq. (9).

To obtain Lemma 2, we start by applying Lemma 1 with the batch configuration and weights p(b) = wϵb−1(µ̂(b− 1)), so
that

P (b+ 1) =

b∑
i=0

wϵi(µ̂i).

This gives us the following deviation bound for the number of plays after batch b:

max
1≤a≤K

∣∣∣∣∣Na(b)−B

b−1∑
i=0

wϵi
a (µ̂i)

∣∣∣∣∣ ≤ B(K − 1).

Moreover, by the definition of wϵ(i), we can express the difference between the weighted actual plays and the optimal
allocation as:

max
1≤a≤K

∣∣∣∣∣B
b−1∑
i=0

wϵi
a (µ̂i)−B

b−1∑
i=0

w∗
a(µ̂i)

∣∣∣∣∣ ≤ BKϵi.

Now, with ϵb = (K2 + bB)−1/2/2, we get√
bB +K2 −K =

∫ bB

0

ds

2
√
K2 + i

≤
bB−1∑
i=0

ϵi ≤
∫ bB−1

−1

ds

2
√
K2 + i

=
√

bB +K2 − 1−
√
K2 − 1.

This yields the following bound on the deviation:

max
1≤a≤K

∣∣∣∣∣Na(b)−B

b−1∑
i=0

w∗
a(µ̂i)

∣∣∣∣∣ ≤ B(K − 1) +BK
(√

bB +K2 − 1−
√
K2 − 1

)
≤ BK(1 +

√
bB).

We now derive the lower bound for Na(b). From the previous results, it follows that:

Na(b) ≥ B

b−1∑
i=0

ϵi −B(K − 1).

Using the integral approximation for
∑b−1

i=0 ϵi, we obtain:

Na(b) ≥ B
(√

bB +K2 −K
)
−B(K − 1).

Simplifying this gives:
Na(b) ≥ B(

√
bB +K2 − 2K + 1)

We can further apply the techniques from Lemma 20 in Garivier and Kaufmann (2016). Let h(β) = β1/4. For all b >
√
β

and all arms a, with ϵ the C-tracking constant used in the L∞ projection.∣∣∣∣Na(b)

bB
− w∗

a(µ)

∣∣∣∣ ≤
∣∣∣∣∣Na(b)

bB
− 1

b

b−1∑
i=0

w∗
a(µ̂i)

∣∣∣∣∣+
∣∣∣∣∣1b

b−1∑
i=0

w∗
a(µ̂i)− w∗

a(µ)

∣∣∣∣∣
≤ BK(1 +

√
bB)

bB
+

h(β)

b
+

1

b

b−1∑
i=h(β)

|w∗
a(µ̂i)− w∗

a(µ)|

≤ 2K + 1

β1/4
+ ϵ .



Thus, for any β ≥ ((2K + 1)/(2ϵ))4, ∣∣∣∣Na(b)

bB
− w∗

a(µ)

∣∣∣∣ ≤ 3ϵ .

Note that this adds a factor B to the lower bound on the corresponding stopping time, T = Bβ.

B.3 PROOOF OF THEOREM 2

Once Lemmas 1–2 have been established, we can exploit the proof of Theorem 14 in Garivier and Kaufmann (2016) to show
that any tracking rule that select batches that solve Eq. (12) satisfies the statement in Theorem 2. Proposition 1 shows that
SBC-C tracking solves Eq. (12).

Here, Lemma 2 takes the role of “Lemma 7” in their case and the other key component, “Lemma 19” applies directly also in
our setting. The rest of the proof follows the same steps as the proof of Theorem 14. In the end, terms that are constant
w.r.t. δ vanish in the division 1/δ when δ → 0. This includes the waiting time for the played proportions to converge to the
tracked proportions, discussed in the previous result. Applying Theorem 14 yields a bound on the stopping time in number
of plays E[τδ], which immediately yields a stopping time on the number of batches E[βδ] = E[τδ]/B since the batch size is
fixed to B and stopping is only performed when completing a full batch. Finally, when there exists p∗ ∈ ΣCK

B,s such that∑
c∈CK

B,s
p∗cca = w∗(µ), it holds that T ∗(µ) = BT ∗

bc(µ), where T ∗(µ) is the characteristic time (number of arm plays) in
the non-batched case Eq. (4), since the optimal arm allocations are feasible to construct from batch configurations.

C A GREEDY ALGORITHM FOR CONSTRUCTING CONFIGURATIONS

The problem in Eq. (12) can be abstracted to the following form. Given demands da ∈ R for a = 1, ..,K, a batch size
B ∈ N and a switching constraint s ∈ {0, ..., B − 1}, the sparse batch deficit minimization problem is,

minimize
c∈NK

∑
a

(da − ca)+

subject to
K∑

a=1

ca = B

∥c∥0 ≤ s+ 1

(15)

We now give a greedy algorithm to solve Eq. (15) and prove that it is optimal.

Proposition 1. Algorithm 2 returns an optimal solution to Eq. (15).

Proof. Each round of Phase I of the algorithm allocates a play that results in a reduction of 1 in the overall deficit or moves
on to the next arm. The arm is changed only if the remaining deficit for the current arm is smaller than 1 and the switching
limit has not yet been reached. It is easy to see that, after Phase 1, any arms a that are assigned at least one play, ca ≥ 1,
will have deficit da − ca ∈ [0, 1) or the batch limit has been filled. It is also easy to see that any unplayed arm, ca = 0,
has a smaller initial demand da than any played arm or there were no arms with a positive demand. If this were true, any
configuration would be optimal.

We can now argue for the result by contradiction. Assume that the solution is suboptimal. That means that there exists at
least one arm a′ such that increasing ca′ by 1 and reducing ca for a selected arm a results in a better solution. Since the total
deficit removed by the batch can be expressed as the sum of deficit removed with each play, it is sufficient to consider one
such change at a time.

Case (i) ca′ = 0. If a′ was not played, increasing ca′ would increase ∥c∥0 which would require removing all plays of a
played arm a if the switching constraint was active. If the switching constraint was not active, Phase 1 terminated with a
non-active constraint as well. This means that either (i.i) all plays in the batch were already allocated or (i.ii) all arms had
already been examined and a′ was ignored. In case (i.i), there would be no use substituting a′ for any played arm since
any selected plays remove a deficit of 1 per round, and the total removed for any arm is at least as large as what could be



Algorithm 2 Greedy batch filling
Input K arms, B : batch size, s : batch switch limit, d ∈ RK : arm demands

1: Phase I: Removing integer deficit
2: Create an index {ai} of arms ordered by d in descending order such that i < j ⇒ dai

≥ daj
for all i, j ∈ [K].

3: Initialize the batch configuration c = [0, ..., 0]⊤ ∈ NK .
4: Set i = 1
5: while

∑K
a=1 ca < B and i ≤ K do

6: if dai − cai ≥ 1 then
7: cai = cai + 1
8: else if ∥c∥0 < s+ 1 then
9: i = i+ 1

10: else
11: Break
12: end if
13: end while
14:
15: Phase II: Removing remaining fractional deficit
16: Sort d− c in descending order such that i < j ⇒ dai

− cai
≥ daj

− caj
for all i, j ∈ [K].

17: Set i = 1
18: while

∑K
a=1 ca < B and i ≤ K do

19: if (dai
− cai

≥ 0) and (cai
> 0 or ∥c∥0 < s+ 1) then

20: cai
= cai

+ 1
21: dai

= dai
− 1

22: else
23: i = i+ 1
24: end if
25: end while
26: Distribute any remaining plays arbitrarily among previously played arms. (E.g. Greedily onto the arm with the largest

fractional deficit in the selected arms)

removed for a′, due to the initial sorting. In case (i.ii), arm a′ must have had a total deficit da′ smaller than 1, or the arm
would have been added. But since ca′ = 0 also after the entire algorithm, a′ must have been ignored also in Phase II. But if
the switching constraint was not active, this must mean that other arms had larger remaining deficits or a′ would have been
selected.

If the switching constraint was active, it could have been activated either in Phase I or Phase II. If it happened in Phase II, a′

must have had da′ < 1 since, otherwise, it would have been selected in Phase I. But this must mean that da′ was smaller
than the demand for an arm that activated the constraint in Phase II. If the constraint was made active in Phase I, there must
have been an arm a with at least as large demand da ≥ da′ that was added instead. Switching a′ for any such a could not
reduce the remaining deficit.

Case (ii) ca′ > 0. If arm a′ was already allocated plays, its allocation could be increased without concern for the switching
constraint. By construction, interchanging plays between selected arms during Phase I makes no difference to the total
removed deficit. This means that the allocation must change during Phase II to improve the objective. But since Phase II
proceeds in order of remaining deficit, either a′ was assigned an additional play in Phase II, in which case increasing ca′

further would not reduce the total deficit since any deficit in Phase II is < 1, or Phase II terminated before increasing ca′ .
Since ca′ > 0, this can only happen if other arms given allocations in Phase II had higher remaining deficit than a′.

In summary, there is no arm a′ for which an increased allocation, at the cost of reducing the allocation for another arm a,
would reduce the total deficit more than the solution by Algorithm 2.



D SPARSE-PROJECTED BATCH (SPB) ALGORITHM FOR CONSTRUCTING
CONFIGURATIONS

Let d ∈ RK
+ denote the vector of deficits for K arms, where da ≥ 0 for a = 1, . . . ,K. Given a batch size B ∈ N and a

switching constraint s ∈ {0, . . . ,min(K − 1, B − 1)} , we consider the following batch configuration problem:

Choose

c ∈ NK such that
K∑

a=1

ca = B and ∥c∥0 ≤ s+ 1,

so as to minimize the total remaining (positive) deficit

D(c) =

K∑
a=1

(
da − ca

)
+
,

or equivalently, to maximize the total deficit removal

R(c) =

K∑
a=1

min{ca, da} .

The Sparse-Projected Batch (SPB) algorithm proceeds as follows:

1. Compute the Normalized Positive Deficits:

d̄ =
(d)+∑K

a=1(da)+
.

2. Project onto the (s+ 1)-Sparse Simplex:

ΣK
s+1 =

{
w ∈ RK

+ :

K∑
a=1

wa = 1, ∥w∥0 ≤ s+ 1
}
.

That is, solve
ŵs+1 ∈ arg min

w∈ΣK
s+1

∥w − d̄∥2 . (16)

The GSSP algorithm (Kyrillidis et al., 2013) showed that this projection can be performed by selecting the largest s+1
arms in d̄ and then re-normalizing.

3. Form the Continuous Configuration:
ĉ = B ŵs+1 .

4. Round to an Integer Configuration: Obtain c̃ ∈ NK from ĉ via the rounding procedure described in Appendix E.

Next, we give a results that when combined with Lemma 1 shows that SPB C-tracking attains the upper bound of Theorem 2.

Proposition 2. Let d ∈ RK
+ be the vector of arm deficits, and let B ∈ N and s ∈ {0, . . . ,min(K − 1, B − 1)} be the batch

size and switching limit, respectively. Then the SPB algorithm—which selects the continuous configuration ĉ = Bŵs+1 with
ŵs+1 given by Eq. (16) and rounds it as described in Appendix E—returns a batch configuration c̃ that minimizes

D(c) =

K∑
a=1

(
da − ca

)
+

over all c ∈ NK satisfying
∑K

a=1 ca = B and ∥c∥0 ≤ s+ 1.



Proof. We now prove Proposition 2 showing that the SPB algorithm minimizes Eq. (15) and thus enjoys the tracking
guarantee.

Consider the batch configuration construction problem at a given batch b, where we select

c ∈ CKB,s = {c ∈ NK :

K∑
a=1

ca = B, ∥c∥0 ≤ s+ 1}

to minimize

D(c) =

K∑
a=1

(
da − ca

)
+
.

Any algorithm that minimizes D(c) automatically satisfies the tracking guarantee required by Theorem 2. We now show that
the SPB algorithm minimizes D(c) by the following steps.

Step 1. Optimality via Maximum Deficit Removal.

Minimizing

D(c) =

K∑
a=1

(
da − ca

)
+

is equivalent to maximizing the total deficit removal

R(c) =

K∑
a=1

min{ca, da} ,

since

D(c) =

K∑
a=1

da −R(c).

This is because
∑K

a=1 da is independent of the allocation c, so minimizing D(c) is equivalent to maximizing R(c):

argmin
c

D(c) = argmax
c

R(c).

Hence, an allocation that removes the largest fraction of the total positive deficit
∑K

a=1(da)+ is optimal for Eq. (15).

Step 2. Decomposition into Integer and Fractional Deficit Removal. For each arm a, decompose the deficit as

da = ⌊da⌋+ {da} ,

where 0 ≤ {da} < 1. Any play allocated to arm a first removes one full unit until ca = ⌊da⌋ plays are allocated; additional
plays then remove only the fractional part {da}. Therefore, if two configurations remove the same number of integer deficit
units, they are equivalent in terms of integer deficit removal. We call a configuration integer-optimal if it removes the
maximum possible number of integer deficit units. For such configurations, the only difference in total deficit removal comes
from the removal of the remaining (fractional) deficit.

Step 3. Maximizing Integer Deficit Removal. Since each play on arm a reduces the deficit by one unit until ca = ⌊da⌋
plays are allocated, any configuration that does not allocate plays to the arms with the largest deficits cannot remove more
integer deficit.

We now prove by contradiction that any configuration which does not allocate all B plays solely to the arms with the largest
integer parts of the deficits (i.e. the top s+ 1 arms in terms of ⌊da⌋) cannot be integer-optimal.

Suppose, for the sake of contradiction, that there exists a configuration

c ∈ NK with
K∑

a=1

ca = B and ∥c∥0 ≤ s+ 1,



which is integer-optimal (i.e. it maximizes
K∑

a=1

min{ca, ⌊da⌋}

over all feasible configurations) but which does not allocate all B plays to the top s+ 1 arms. This means there exists an
arm j that is not among the top s+ 1 arms (with respect to ⌊da⌋) for which cj > 0.

If the configuration uses at most s+ 1 arms and arm j is not among the top s+ 1 arms, there must exist an arm i among the
top s+ 1 arms for which either ci is less than its capacity to remove integer deficit (i.e. ci < ⌊di⌋) or even ci = 0.

Now, define a new configuration c′ by transferring one play from arm j to arm i:

c′i = ci + 1, c′j = cj − 1, c′a = ca for all a /∈ {i, j}.

Because ci < ⌊di⌋, we have
min{c′i, ⌊di⌋} = ci + 1 > ci = min{ci, ⌊di⌋}.

For arm j, note that reducing cj by one unit cannot increase the term min{cj , ⌊dj⌋}; indeed, if cj ≤ ⌊dj⌋ then the removal
decreases by one unit, and if cj > ⌊dj⌋ the term remains ⌊dj⌋. Therefore,

min{c′j , ⌊dj⌋} ≤ min{cj , ⌊dj⌋}.

Consequently, the total integer deficit removal in configuration c′ satisfies

K∑
a=1

min{c′a, ⌊da⌋} >
K∑

a=1

min{ca, ⌊da⌋}.

This contradicts the assumption that c was integer-optimal.

Thus, by contradiction, any integer-optimal configuration must allocate all B plays to a subset of at most s+ 1 arms with
the highest ⌊da⌋ values. By design, the SPB algorithm selects these top s+ 1 deficit arms, thereby maximizing the number
of integer deficit units removed.

Step 4. Maximizing Fractional Deficit Removal among Integer-Optimal Configurations. Once the integer deficit is
maximized, the remaining difference among configurations is solely due to the removal of the fractional parts {da}. Since
{da} < 1 for every arm, the optimal strategy is to allocate any extra plays in decreasing order of the fractional deficit.

Via the rounding procedure in Appendix E, the SPB algorithm produces an integer configuration that allocates any remaining
plays in decreasing order of the fractional remainders. Therefore, among all integer-optimal configurations, the SPB-selected
configuration removes the maximum possible fractional deficit.

Step 5. Concluding Optimality. Combining Steps 3 and 4, we conclude that the SPB algorithm:

(i) Selects an allocation that is integer-optimal (i.e., it removes the maximum number of integer deficit units by playing
only the top s+ 1 arms).

(ii) Among integer-optimal configurations, allocates any extra plays so as to maximize the removal of the fractional deficits.

Thus, any configuration different from the SPB-selected configuration must either remove fewer integer deficit units or (if
integer-optimal) remove a smaller sum of fractional deficits. In either case, the total remaining deficit D(c) would be larger
than that achieved by the SPB algorithm.

Since minimizing D(c) is equivalent to obtaining the tracking guarantee (and any algorithm minimizing Eq. (15) attains the
same upper bound as the SBC algorithm), we conclude that the SPB algorithm minimizes D(c) and enjoys the same upper
bound.

Conclusion. In summary, we have shown that:

• Any batch configuration that removes the largest fraction of the total positive deficit is optimal with respect to Eq. (15).

• Among configurations that remove the same number of integer deficit units (i.e., among integer-optimal configurations),
the one that removes the maximum fractional deficit is best.



• The SPB algorithm, by selecting the top s + 1 arms and using a rounding procedure that allocates extra plays in
decreasing order of fractional deficit, simultaneously maximizes both the integer and fractional deficit removal.

Thus, the SPB algorithm minimizes D(c) and consequently enjoys the tracking guarantee as stated in Theorem 2.

E ROUNDING PROCEDURE

To convert the continuous solution ĉ = B · ŵs+1 (with ŵs+1 ∈ ΣK
s+1) into a valid integer allocation c̃ ∈ NK , we proceed as

follows:

1. Flooring: For each arm a, set

c̃a = ⌊ĉa⌋ .

2. Computing Remainders: For each arm a, compute the fractional remainder

fa = ĉa − ⌊ĉa⌋ .

3. Allocating Remaining Plays: Let

R = B −
K∑

a=1

c̃a .

Distribute the remaining R plays to the arms in decreasing order of fa (breaking ties arbitrarily).

F APPENDIX: ADDITIONAL EXPERIMENTAL RESULTS

Table 2 contains the number of configurations for 8 arms, batch size B = 128 for various values of the switching constraint
s.

s At most s switches Exactly s switches
7 138432467745 89356415775
6 49076051970 41355035400
5 7721016570 7118489700
4 602526870 578739000
3 23787870 23336250
2 451620 448056
1 3564 3556
0 8 8

Table 2: The number of configurations
∣∣CKB,s

∣∣ for different s values K = 8, B = 128.

K At most s switches Exactly s switches
4 366145 333375
8 23787870 23336250

16 611238316 606742500
32 12027912984 11988165000
64 212152083760 211818474000

128 3559176881760 3556444500000

Table 3: The number of configurations
∣∣CKB,s

∣∣ for different K values s = 3, B = 128.
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Figure 7: Illustrative example comparing arm selection for SPB and SBC starting from the same accumulated arm plays
N(b) and desired proportions w̄(b) after b = 10 batches. BatchRacing included for reference.

Example 2: Tracking characteristics Consider an illustrative example with K = 8, B = 64 and s = 2 where until a
batch b = 10, both algorithms have accumulated the same number of arm plays, as well as the deficits:∑b−1

i=0 w
ϵi(µ̂i) = [2.918, 1.643, 1.696, 1.082, 0.708, 0.894, 1.291, 0.769]⊤,

N(b) = [177, 103, 94, 50, 43, 61, 72, 40]⊤,
d(b) = B

∑b−1
i=0 w

ϵi(µ̂i)−N(b) = [9.752, 2.152, 14.544, 19.248, 2.312,−3.784, 10.624, 9.216]⊤.

In deciding the next plays, SBC and SPB respectively yield the following configurations, also shown in Figure 7:
SPB: c̃ = [0, 0, 21, 26, 0, 0, 17, 0]⊤

SBC: c̃ = [0, 0, 15, 20, 0, 0, 29, 0]⊤



F.1 ADDITIONAL RESULTS
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Figure 8: Comparison trace of observed switches along time in batches for SBC and SPB C-Tracking (Ours) vs BatchRacing
(Baseline) with s = 1 for different batch sizes B ∈ {8, 16, 32, 64, 128, 256}

F.2 A SECOND SET OF 16 ARMS

A second simulation setting comprises a set of 16 arms from Gaussian distributions, with means µ =
{0.80, 0.69, 0.66, 0.62, 0.59, 0.55, 0.52, 0.48, 0.45, 0.41, 0.38, 0.34, 0.31, 0.27, 0.24, 0.20} and standard deviation σ = 0.3.
The results are consistent with the first simulation and are shown in Figures 12, 13 and 14.

G CODE

All code in Python for the algorithms implementation and reproducing graphs is included in the supplemental files as zip
file. The algorithm modules were written as extension modules to BanditPyLib by Holtz et al. (2020) and they can be found
in the banditpylib/learners/mab_fcbai_learner directory. Notebooks for running the experiments with Slurm and for
reproducing the graphs are also included in the examples/ folder.
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Figure 9: Comparison trace of observed switches along time in batches for SBC and SPB C-Tracking (Ours) vs BatchRacing
(Baseline) with s = 3 for different batch sizes B ∈ {8, 16, 32, 64, 128, 256}
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Figure 10: Comparison of stopping times over switching limits s ∈ {0, 1, 2, 3, 5, 7} in SPB C-Tracking (Ours) with different
batch sizes B ∈ {8, 16, 32, 64128}. Track-and-stop C-tracking is not batched.
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Figure 11: Effect of batch size on the stopping times for BatchRacing and SPB C-Tracking s ∈ {0, 1, 3, 5, 7}, B ∈
{8, 16, 32, 64, 128, 256, 512, 1024}.
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Figure 12: Comparison trace of observed switches along time in batches for SBC and SPB C-Tracking (Ours) with
s = 1, B = 32 vs BatchRacing (Baseline).
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Figure 13: Comparison of stopping times over switching limits s ∈ {0, 1, 5, 10, 15} in SPB C-Tracking (Ours) with different
batch sizes B ∈ {16, 128, 256, 512, 1024}. Track-and-stop C-tracking is not batched.
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Figure 14: Effect of batch size on the stopping times for BatchRacing and SPB C-Tracking s ∈ {0, 1, 5, 10, 15}, B ∈
{16, 32, 64, 128, 256, 512, 1024}.
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